Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonsoir, voici ma question, je bloque dessus depuis plusieurs heures, j'ai vraiment du mal avec les suites numériques. Je suis en Terminale Spé Math.

On considère la suite (Un) définie par U0 = 1 et pour tout entier naturel n : Un+1=2Un-n+3

1. Démontrez par récurrence que, pour tout entier naturel n, on a Un = 3 * 2^n+n-2

2.Déterminer la limite de la suite (Un). Justifiez la réponse

Merci !


Sagot :

Réponse :

U0 = 1  

Un+1 = 2Un - n + 3   pour  tout entier naturel n

1) démontrer par récurrence que, pour tout entier naturel n, on a

    Un = 3 x 2ⁿ + n - 2

  Initialisation :  vérifions que pour n = 0  P(0) est vraie

                               U0 = 3 x 2⁰ + 0 - 2 = 3 - 2 = 1   donc  P(0) est vraie

  hérédité :  supposons que pour  tout n ∈ N , P(n) est vraie par hypothèse

                    c'est à dire on pose par hypothèse Un = 3 x 2ⁿ + n - 2 et montrons que P(n+1) est vraie  c'est à dire il faut montrer que

Un+1 = 3 x 2ⁿ⁺¹ + (n+1) - 2

en partant de l'expression :

Un+1 = 2Un - n + 3

         = 2(3 x 2ⁿ + n - 2) - n + 3

         = 2 x 3 x 2ⁿ + 2 n - 4 - n + 3

         = 3 x 2ⁿ⁺¹ + n - 1

         = 3 x 2ⁿ⁺¹ + n  - 2 + 1

         = 3 x 2ⁿ⁺¹ + (n + 1) - 2

Donc  on a démontré que P(n+1) est vraie pour tout entier naturel n

Conclusion :   pour n = 0 ;   P(0) est vraie et P(n) est héréditaire

                        par récurrence et pour tout entier naturel n  P(n) est vraie  

2) déterminer la limite de la suite (Un)   justifiez la réponse

    lim Un  = lim 3 x 2ⁿ + n - 2    or  lim 3 x 2ⁿ = + ∞ et  lim (n - 2) = + ∞

    n→ + ∞     n→ + ∞                          n→+∞                       n→+∞

donc la lim Un = ∞ + ∞ = + ∞

            n→ + ∞                                                

Explications étape par étape

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.