Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonsoir, voici ma question, je bloque dessus depuis plusieurs heures, j'ai vraiment du mal avec les suites numériques. Je suis en Terminale Spé Math.

On considère la suite (Un) définie par U0 = 1 et pour tout entier naturel n : Un+1=2Un-n+3

1. Démontrez par récurrence que, pour tout entier naturel n, on a Un = 3 * 2^n+n-2

2.Déterminer la limite de la suite (Un). Justifiez la réponse

Merci !


Sagot :

Réponse :

U0 = 1  

Un+1 = 2Un - n + 3   pour  tout entier naturel n

1) démontrer par récurrence que, pour tout entier naturel n, on a

    Un = 3 x 2ⁿ + n - 2

  Initialisation :  vérifions que pour n = 0  P(0) est vraie

                               U0 = 3 x 2⁰ + 0 - 2 = 3 - 2 = 1   donc  P(0) est vraie

  hérédité :  supposons que pour  tout n ∈ N , P(n) est vraie par hypothèse

                    c'est à dire on pose par hypothèse Un = 3 x 2ⁿ + n - 2 et montrons que P(n+1) est vraie  c'est à dire il faut montrer que

Un+1 = 3 x 2ⁿ⁺¹ + (n+1) - 2

en partant de l'expression :

Un+1 = 2Un - n + 3

         = 2(3 x 2ⁿ + n - 2) - n + 3

         = 2 x 3 x 2ⁿ + 2 n - 4 - n + 3

         = 3 x 2ⁿ⁺¹ + n - 1

         = 3 x 2ⁿ⁺¹ + n  - 2 + 1

         = 3 x 2ⁿ⁺¹ + (n + 1) - 2

Donc  on a démontré que P(n+1) est vraie pour tout entier naturel n

Conclusion :   pour n = 0 ;   P(0) est vraie et P(n) est héréditaire

                        par récurrence et pour tout entier naturel n  P(n) est vraie  

2) déterminer la limite de la suite (Un)   justifiez la réponse

    lim Un  = lim 3 x 2ⁿ + n - 2    or  lim 3 x 2ⁿ = + ∞ et  lim (n - 2) = + ∞

    n→ + ∞     n→ + ∞                          n→+∞                       n→+∞

donc la lim Un = ∞ + ∞ = + ∞

            n→ + ∞                                                

Explications étape par étape

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.