Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
bjr
2) Montrer que, pour tout entier naturel, 3n² + n est pair. On pourra distinguer les cas où n est pair ou n est impair.
n est pair - il s'écrit donc 2k
on calcule
3n² + n = 3 * (2k)² + 2k = 3 * 4k² + 2k = 12k² + 2k = 2 (k² + 1) => pair
n est impair - il s'écrit donc (2k + 1)
on calcule
3n² + n = 3 (2k+1)² + 2k + 1 = 3 (4k² + 4k + 1) + 2k + 1
= 12k² + 12k + 3 + 2k + 1
= 12k² + 14k + 4
= 2 (6k² + 7k + 2)
=> pair puisque multiple de 2
le 1 se fait en 4eme :)
Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.