Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Terminale ( execice maths)
Bonjour , je bosse sur mon dm de maths et coince sur les exercices de raisonnement par récurrence dont voici un énoncé :
Soit n ∈ N * .On désigne par S la somme des cubes des n premiers entiers naturels impairs .
Sn = 1 ² + 3²+ 5²+ .......+( 2n -1 )² ( ps: chaque puissance est au cube ,g écrit au carré car je n'arrive pas à taper au cube, je ne trouve que le carré dans les symboles )
par exemple ,S ₃ = 1² +3² +5² = 153 ( idem, puissance au cube!!)

1. Démontrer par récurrence , que pour tout n ∈ N* , Sn = 2n (puissance 4) - n² ( là , c'est bien au carré !! )
2. Déterminer l'entier naturel n tel que : 1² +3²+ 5²+...+ ( 2n -1) ²= 913 276 ( toutes les puissances sont au cube !! )

Je m'excuse pour l'histoire des puissances qui complique la lecture de l'énoncé ....
Je connais les étapes du raisonnement par récurrence mais impossible de le démontrer ..qqu'un peut il m'aider ..si oui je le remercie par avance

Sagot :

Réponse :

Explications étape par étape

View image olivierronat
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.