Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonsoir, pouvez-vous m'aider sur cet exercice ci-joint s'il vous plait ? Merci

Bonsoir Pouvezvous Maider Sur Cet Exercice Cijoint Sil Vous Plait Merci class=

Sagot :

Bonsoir,

Montrons par récurrence sur [tex]n \in \mathbb{N}^*[/tex] la propriété suivante :

H(n):"[tex]\sum_{k=1}^n \frac{k}{2^k}=2+\frac{-n-2}{2^n}[/tex]."

Initialisation : n=1

H(1) est vraie car [tex]\sum_{k=1}^1 \frac{k}{2^k}=\frac{1}{2}=2+\frac{-3}{2}[/tex].

Hérédité : Soit [tex]n \in \mathbb{N}^*[/tex] tel que H(n) soit vraie, et montrons H(n+1).

On a, par HR :

[tex]\sum_{k=1}^{n+1} \frac{k}{2^k}=\sum_{k=1}^n \frac{k}{2^k}+\frac{n+1}{2^{n+1}}=2+\frac{-n-2}{2^n}+\frac{n+1}{2^{n+1}}[/tex].

Or : [tex]\frac{-n-2}{2^n}+\frac{n+1}{2^{n+1}}=\frac{-2n-4}{2^{n+1}}+\frac{n+1}{2^{n+1}}=\frac{-n-3}{2^{n+1}}=\frac{-(n+1)-2}{2^{n+1}}[/tex]

donc : [tex]\sum_{k=1}^{n+1} \frac{k}{2^k}=\frac{-(n+1)-2}{2^{n+1}}[/tex], d'où H(n+1).

Par principe de récurrence, la propriété est vraie pour tout [tex]n \in \mathbb{N}^*[/tex], soit :

Pour tout [tex]n \in \mathbb{N}^*[/tex], [tex]\boxed{\sum_{k=1}^n \frac{k}{2^k}=2+\frac{-n-2}{2^n}}[/tex].

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.