Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

SVP C'EST UN DEVOIR QUE JE DOIS RENDRE DEMAIN MATIN, SI IL YA QUELQU'UN BÉNÎT SOIT-IL A M'AIDEZ JE LE REMERCIERAIT JAMAIS ASSEZ!! Soit k est un entier naturel. a. Démontre que si k est impair alors 8 divise k2 - 1. b. Le nombre 1+3k est-il toujours pair? c. Démontre que 2k + 2k +1 est divisible par 3. Je fais appel à votre gentillesse! AIDEZ MOI PAR PITIER!

Sagot :

ET SI TU T'Y PRENAIS A TEMPS ?? et sans CRIER ???

 

si k est impair, il s'ecrit 2n+1 et k^2-1 vaut donc 4n^2+4n=4n(n+1)

Or n et n+1 sont forcement l'un pair et l'autre impair et ce produit est donc un multiple de 8

 

1+3k est impair des lors que k est pair...

 

2k+2k+1 N'EST PAS en general divisible par 3 : 5 par ex ne marche pas...

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.