Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

J'en suis à la question 2b) et je suis bloquée :

 

Soit m un réel.

On cherche à déterminer le nombre de solutions réelles de l'équation

(E) : 4mx² - 4(m+2)x +2m +1 = 0

 

 

1. Soit f la fonction définie sur par f(x) = (8x-1)/(4²-4x+2)

 

a. Démontrer que, pour tout m, l'équation (E) et l'équation f(x) = m ont le même ensemble de solutions.

 

b. Tracer la courbe représentative de f sur l'écran de la calculatrice et émettre une conjecture sur le nombre de solutions de l'équations f(x) = m en fonction des valeurs de m.

 

 

2. a. Résoudre (E) pour m=0

 

b. Soit m (différent) de 0. Exprimer le disciminant de l'équation (E) en fonction de m.

Etudier son signe et répondre alors au problème posé.

 

 

3. a. Exprimer la somme des racines de (E), quand elles existent, en fonction de m.

 

b. L'équation (E) peut-elle admettre deux racines opposées ?



Sagot :

delta = 16(-m²+3m+4)                 

     -1                 4

-----|--------------|--------

  -    0        +        0      -

E a deux racines  distinctes si -1< m < 4

1 racine double qd m = -1 ou m = 4

 

somme = (m+2)/m elle est nulle quand m = -2 et à cemoment E a des racines opposées

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.