Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour pouvez vous m'aidez svpp sur l'exercice ci dessous
merci bien


Bonjour Pouvez Vous Maidez Svpp Sur Lexercice Ci Dessous Merci Bien class=

Sagot :

Bonjour,

Montrons par récurrence sur [tex]n \in \mathbb{N}[/tex] la propriété H(n):"[tex]w_n=3(1-2^n)[/tex]."

Initialisation : n=0

H(0) est vraie car [tex]w_0=0=3(1-2^0)[/tex].

Hérédité : Soit [tex]n \in \mathbb{N}[/tex] tel que H(n) soit vraie. Montrons H(n+1).

On a : [tex]w_{n+1}=2w_n-3[/tex]

et, par hypothèse de récurrence, [tex]w_n=3(1-2^n)[/tex].

En remplaçant, on obtient :

[tex]w_{n+1}=2\times 3(1-2^n)-3=6-2\times3\times2^n-3=3-3\times2^{n+1}=3(1-2^{n+1})[/tex]

donc H(n+1) est vraie.

Par principe de récurrence, la propriété est vraie pour tout entier n, c'est-à-dire, pour tout [tex]n \in \mathbb{N} : w_n=3(1-2^n)[/tex].