Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

BONJOUR aider moi svp merci d'avance

BONJOUR Aider Moi Svp Merci Davance class=

Sagot :

Bonjour,

1) [tex]L=\{2;3;5\}[/tex]

a) Le produit de ces nombres augmenté de 1 vaut : [tex]2\times3\times5+1=31[/tex].

b) On obtient bien un nombre premier : 31, qui n'était pas dans la liste L.

-> A partir de 3 nombres premiers, on en a construit un 4e.

2) [tex]L=\{2;3;5;7;\cdots;P\}[/tex]

a) [tex]n=2 \times3\times5\times7\times\cdots\times P+1[/tex]

n est entier comme produit et somme d'entiers (tous les nombres qui forment n sont des entiers).

b) Tu as vu dans le cours que tout entier [tex]\ge 2[/tex] admet un diviseur premier.

Or [tex]n \ge 2[/tex] (puisqu'il s'écrit [tex]2\times \cdots +1[/tex]) et est entier par la question précédente.

Ainsi, n admet un diviseur premier, noté q.

c) q est un nombre premier.

Or, L est une liste qui contient tous les nombres premiers (hypothèse du raisonnement par l'absurde).

Ainsi, q apparaît dans L.

Ainsi, q apparaît comme facteur dans le produit de tous les éléments de L : [tex]2 \times 3 \times 5 \times 7 \times \cdots \times P=n-1[/tex].

q divise donc ce produit, càd que q divise n-1.

d) Par la question b), q divise n.

Par la question c), q divise n-1.

Par combinaison linéaire, q divise n-(n-1)=1, donc q divise 1.

e) q est un nombre premier, donc est [tex]\ge 2[/tex]. Il ne peut donc pas diviser 1 : c'est absurde.

On a abouti à une contradiction, donc l'hyposthèse de départ selon laquelle il existe un nombre fini de nombres premiers est fausse.

Ainsi, l'ensemble des nombres premiers est infini.

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.