Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonsoir, si quelqu’un peut m’aider svp.

4)Pour tout entier naturel non nul n, on pose:
Sn= Sigma (k=0 n) uk = U0+ U1 + ... + Un
Et Tn= Sn/n^2
(Un= 2(2/3)^n + n)
a) Exprimer Sn en fonction de n.
b)Déterminer la limite de la suite (Tn).


Sagot :

Bonjour,

4)a) Soit [tex]n \in \mathbb{N}^*[/tex].

On remplace simplement [tex]u_k[/tex] dans l'expression de [tex]S_n[/tex] :

[tex]S_n=\sum_{k=0}^n u_k=\sum_{k=0}^n \left(2\left(\frac{2}{3}\right)^k+k\right)=2\sum_{k=0}^n\left(\frac{2}{3}\right)^k+\sum_{k=0}^n k[/tex]

donc : [tex]S_n=2\frac{1-\left(\frac{2}{3}\right)^{n+1}}{1-\frac{2}{3}}+\frac{n(n+1)}{2}=6\left(1-\left(\frac{2}{3}\right)^{n+1}\right)+\frac{n(n+1)}{2}=-6\times \frac{2}{3}\left(\frac{2}{3}\right)^{n}+6+\frac{n^2}{2}+\frac{n}{2}[/tex]

d'où : [tex]\boxed{S_n=-4\left(\frac{2}{3}\right)^n+\frac{n(n+1)}{2}+6.}[/tex]

b) [tex]T_n=\frac{S_n}{n^2}=\frac{-4}{n^2}\left(\frac{2}{3}^\right)^n+\frac{1}{2}+\frac{1}{2n}+\frac{6}{n^2}[/tex] donc [tex]\boxed{\lim_{n \to \infty} T_n =\frac{1}{2}}[/tex]

car [tex]\lim_{n \to \infty} \left(\frac{2}{3}\right)^n =0[/tex] car [tex]\left|\frac{2}{3}\right|<1[/tex].

Voilà. N'hésite pas à demander des précisions.

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.