Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour,
Pour un DM de Mathématiques Expertes, je dois résoudre une équation de degrés 4 dans l'ensemble des complexes. Le problème est que je n'ai aucun idée de comment trouver les racines d'un polynôme de degré 4. Est ce que vous pouvez m'aider ?
Voici le polynôme en question : [tex]z^{4} -10z^{3}+38z^{2}-90z+261[/tex]
Merci d'avance pour votre aide

Sagot :

Bonjour,

Je ne vois pas de solution miracle ce coup-ci...

Une idée logique est de chercher une solution imaginaire pure, sous la forme [tex]\mathrm{i} x_0[/tex] avec [tex]x_0 \in \mathbb{R}[/tex].

En injectant dans l'équation, il vient, en identifiant parties réelles et imaginaires :

[tex]\left(x_0^4-38x_0^2+261 \right)+\left(10x_0^3-90x_0\right) \mathrm{i}=0 \iff \left \{ {{x_0^4-38x_0^2+261=0} \atop {10x_0^3-90x_0=0}} \right.[/tex].

On peut éliminer la solution nulle (0 ne convient pas) et on obtient alors :

[tex]\left \{ {{x_0^4-38x_0^2+261=0} \atop {x_0^2=9}} \right. \iff \left \{ {{x_0^4-38x_0^2+261=0} \atop {x_0=-3}} \right. \text{ ou } \left \{ {{x_0^4-38x_0^2+261=0} \atop {x_0=3}} \right.[/tex] et ces deux solutions conviennent bien.

Ainsi, [tex]-3\mathrm{i}[/tex] et [tex]3\mathrm{i}[/tex] sont deux racines du polynôme.

Il reste à trouver les deux dernières. C'est facile en factorisant. On écrit :

[tex]z^4-10z^3+38z^2-90z+261=(z-3\mathrm{i})(z+3\mathrm{i})(z^2+az+b)[/tex]

avec a et b deux réels à déterminer.

En développant, on obtient :

[tex]z^4-10z^3+38z^2-90z+261=(z^2+9)(z^2+az+b)=z^4+az^3+(b+9)z^2+9az+9b[/tex]

donc : [tex]a=-10 \text{ et } b=29[/tex]; soit [tex]z^4-10z^3+38z^2-90z+261=(z^2+9)(z^2-10z+29)[/tex].

Il ne reste plus qu'à trouver les racines du polynôme [tex]z^2-10z+29[/tex], ce qui se fait facilement avec le discriminant. On trouve [tex]5+2\mathrm{i}[/tex] et [tex]5-2\mathrm{i}[/tex].

Finalement, les quatre racines du polynôme précédent sont [tex]\boxed{5+2\mathrm{i}, \, 5-2\mathrm{i},\, 3\mathrm{i}, \, -3\mathrm{i}}[/tex].

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.