Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjours, j arrive pas à cette question, quelqu'un pourrais me donner la réponse pour que je puisse voir le calcul ?

Exercice : Soit f la fonction définie sur R par f(x) = 0,3x3 – 2,7x2 + 8,2x – 6.

Etudier le sens de variation de la fonction f.​


Sagot :

bonjour,

Pour progresser en math, il faut t'entrainer. Je te donne la méthode, mais tu feras les calculs.

Demande en commentaires si tu as besoin de vérifier tes solutions, où si tu comprends pas.

Pour étudier le sens de variation d'une fonction, on va étudier le signe de sa dérivée.

Si la dérivée est positive, ta  fonction est croissante sur ton intervalle, si ta fonction dérivée est négative, alors ta fonction est décroissante sur ton intervalle.

Donc  étape 1 :  il faut que tu calcules la dérivée de la fonction  ( tu peux t'aider de ton cours . Pour mémoire  la  dérivée  de  x^(n) est  nx^(n-1)  

et les constantes disparaissent à la dérivation ( la dérivée d'une constante est 0 )

étape 2 :  tu vas te retrouver avec une  fonction , appelons- la  f'(x) ,  du second degré.  Il faut que tu cherches les  racines, c'est à dire les valeurs de x  tel que  f'(x) = 0 .  Là encore tu as dans ton cours une méthode pour cela .  Soit c'est factorisable, soit tu résous par discriminant  ( la méthode avec " delta " )

étape 3 :   ta fonction du second degré est de la forme  :  ax² +bx +c .   on  sait qu'une fonction du second degré est du signe de  "a" sauf en les racines  si elles existent.  

donc le tableau de signe de ta dérivée donne :   signe de a  ;  arrivée à la racine  =0 ;  signe de -a ;  racine = 0 ;  puis signe de  a .

Donc comme  "a" est positif,  cela va donner pour ta fonction dérivée :

positif ; racine = 0 ; négatif ; racine =0, positif

et donc pour ta fonction initiale :  croissante, une barre à la racine ; décroissante , une barre à la racine, croissante  

et en valeur  de Xdans ton tableau :   - infini ; racine 1 ;  racine 2 ;   + infini

lorsque ta fonction est à la racine de ta dérivée , ta fonction change de sens de variation, elle atteint donc un pic ou un minimum avant de partir dans l'autre sens.

Bon courage .

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.