Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Coucou je suis en terminale générale en spé mathématiques et je bloque vraiment dès la première question d'un devoir maison sur les suites... si quelqu'un aurait du temps pour m'aider ce serait gentil :)

Coucou Je Suis En Terminale Générale En Spé Mathématiques Et Je Bloque Vraiment Dès La Première Question Dun Devoir Maison Sur Les Suites Si Quelquun Aurait Du class=

Sagot :

Bonjour,

1) - A l'étape 1, il n'y a qu'un seul carré de côté 4, donc d'aire 16; soit [tex]\boxed{a_1=16}[/tex].

- A l'étape 2, il y a le carré précédent plus un nouveau de côté 2 (donc d'aire 4). L'aire totale est 16+4=20 : [tex]\boxed{a_2=20}[/tex].

- De même : [tex]\boxed{a_3=21}[/tex] et [tex]\boxed{a_4=21+\frac{1}{4}=\frac{85}{4}=21,25}[/tex].

2) On va montrer ce résultat par récurrence sur [tex]n \in \mathbb{N}^*[/tex].

Pour cela, il nous faut d'abord une relation de récurrence définissant notre suite. On a clairement, pour [tex]n \ge 1[/tex] :

[tex]a_{n+1}=a_n+\Big(\frac{4}{2^n}\Big)^2=a_n+4^{2-n}[/tex].

Initialisation : n=1 -> [tex]a_1=16=\frac{64}{3}(1-\frac{1}{4})[/tex] OK.

Hérédité : Soit [tex]n \ge 1[/tex] tel que la propriété soit vraie au rang n. On va la montrer au rang n+1.

On a vu : [tex]a_{n+1}=a_n+4^{2-n}[/tex], donc, par HR :

[tex]a_{n+1}=\frac{64}{3} \left(1-\Big(\frac{1}{4} \Big)^n\right)+4^{2-n}=\frac{64}{3}-\frac{64}{3} \Big(\frac{1}{4} \Big)^n+\frac{16}{4^n}=\frac{64}{3}+\frac{1}{4^n}\Big(16-\frac{64}{3}\Big)[/tex]

donc : [tex]a_{n+1}=\frac{64}{3}+\frac{1}{4^n}\Big(-\frac{16}{3}\Big)=\frac{64}{3}+\frac{1}{4^{n+1}}\Big(-\frac{16\times 4}{3}\Big)[/tex] et donc :

[tex]a_{n+1}=\frac{64}{3}\left(1-\frac{1}{4^{n+1}}\right)[/tex] d'où la propriété au rang n+1.

Par principe de récurrence :

[tex]\boxed{\forall n \ge 1, a_n=\frac{64}{3}\left(1-\frac{1}{4^n}\right).}[/tex]

3) Je te laisse faire. C'est très facile...

4)a) Pour [tex]n \ge 1:[/tex]

[tex]a_{n+1}-a_n=4^{2-n} \ge 0[/tex] donc [tex]a_{n+1} \ge a_n[/tex] càd [tex]\boxed{(a_n) \text{ est croissante.}}[/tex].

b) On a vu [tex]a_n=\frac{64}{3}\left(1-\frac{1}{4^n}\right).}[/tex] Donc [tex]\lim_{n \to \infty} a_n =\frac{64}{3}[/tex] car [tex]\left|\frac{1}{4}\right|<1[/tex].

Ainsi, [tex](a_n)[/tex] est croissante et converge vers 64/3. Elle est donc majorée par 64/3.

c) Je trouve [tex]\boxed{n_0=13}[/tex].

Rq : La borne supérieure ([tex]a_n-\frac{64}{3} \le 10^{-6}[/tex]) est complétement inutile puisqu'on a montré que, pour tout [tex]n \ge 1[/tex] : [tex]a_n-\frac{64}{3} \le 0[/tex]

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.