Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Réponse :
Salut !
Effectivement, l'erreur que tu as commise, c'est de conclure abusivement sur une forme indéterminée, tu as un 0 * + l'infini donc on ne peut rien dire.
Du coup il faut lever l'indétermination. Soit tu connais le développement limité, soit on fait autrement.
Avec le DL :
[tex]\sqrt{x^2+x}-x = x\sqrt{1+\frac 1x}-x = x\left[1 +\frac{1}{2x} + o\left(\frac 1x\right)\right] -x= \frac 12 +o(1) \underset{x\to +\infty}{\longrightarrow} \frac 12[/tex]
Sans le DL : c'est plus compliqué mais on y arrive. On appelle f(x) ton expression.
[tex]\begin{array}{ccc}\\f(x)& =& x\left[\sqrt{1+\frac 1x}-1\right]\\\\&=& x \cdot \frac{\sqrt{1+\frac 1x} - \sqrt 1}{\left(1+\frac 1x\right) - 1}\cdot \frac 1x\\\\&=& \frac{1}{\sqrt{1+\frac 1x} + \sqrt 1} \underset{x\to +\infty}{\longrightarrow} \frac 12\end{array}[/tex]
Explications étape par étape
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.