Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Réponse :
Ton professeur te demande de prouver que : si tu multiplies deux entiers qui se suivent, entre eux, tu obtiens forcement un résultat pair.
Soit deux entiers consécutifs n et n+1.
- Si n est pair, alors il s’écrit sous la forme n = 2k, avec k entier.
Alors le produit des deux entiers consécutifs s’écrit :
n(n+1) = 2k(2k+1) = 2k1, avec k1 = k(2k+1) entier.
Donc n(n+1) est pair.
- Si n est impair, alors il s’écrit sous la forme n = 2k+1, avec k entier.
Alors le produit des deux entiers consécutifs s’écrit :
n(n+1) = (2k+1)(2k+2) = 2(2k+1)(k+1) = 2k2, avec k2 = (2k+1)(k+1) entier.
Donc n(n+1) est pair.
Dans tous les cas, le produit de deux entiers consécutifs est un nombre pair.
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.