Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Réponse :
Initialisation : vérifions que P(0) est vraie 3³ - 4² est divisible par 11
27 - 16 = 11 donc 11 est divisible par 11 donc P(0) est vraie
hérédité : on suppose que pour tout entier naturel n P(n) est vraie c'est à dire (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11 et montrons que P(n+1) est vraie aussi
c'est à dire on veut montrer que 3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺² est divisible par 11
(3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺²) - (3ⁿ⁺³ - 4⁴ⁿ⁺²) = 3ⁿ⁺⁴ - 3ⁿ⁺³ - 4⁴ⁿ⁺⁴⁺² + 4⁴ⁿ⁺²
= 3ⁿ⁺³(3 - 1) - 4⁴ⁿ⁺²(4⁴ - 1) = 2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(255)
=2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(253 + 2)
= 2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(11 x 23 + 2) = 2 x 3ⁿ⁺³ - 11 x 23 x 4⁴ⁿ⁺² - 4⁴ⁿ⁺² x 2
= 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) - 11 x 23 x 4⁴ⁿ⁺²
= 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) + (- 11 x 23 x 4⁴ⁿ⁺²)
or 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11 par hypothèse
et - 11 x 23 x 4⁴ⁿ⁺² est divisible par 11
donc par addition 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) + (- 11 x 23 x 4⁴ⁿ⁺²) est divisible par 11
donc (3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺²) - (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11
Conclusion : pour n = 0 P(0) est vraie
pour tout entier naturel n, par récurrence P(n) est vraie
Explications étape par étape
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.