Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Bonjour, j'ai un problème en Maths Expertes, je n'arrive pas à le résoudre voici le problème : Montrer par récurrence que pour tout entier naturel n 3^n+3 - 4^4n+2 est divisible par 11. Pouvez vous m'aider le plus vite possible s'il vous plait merci d'avance.
Zouwey ^^


Sagot :

Réponse :

Initialisation :  vérifions que P(0) est vraie   3³ - 4² est divisible par 11

27 - 16 = 11   donc  11 est divisible par 11   donc P(0) est vraie

hérédité  :   on suppose que pour tout entier naturel n  P(n) est vraie c'est à dire (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11 et montrons que P(n+1) est vraie aussi

    c'est à dire on veut montrer que  3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺² est divisible par 11

  (3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺²) - (3ⁿ⁺³ - 4⁴ⁿ⁺²) = 3ⁿ⁺⁴ - 3ⁿ⁺³ - 4⁴ⁿ⁺⁴⁺² + 4⁴ⁿ⁺²

= 3ⁿ⁺³(3 - 1) - 4⁴ⁿ⁺²(4⁴ - 1) = 2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(255)

=2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(253 + 2)

= 2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(11 x 23 + 2) = 2 x 3ⁿ⁺³ - 11 x 23 x 4⁴ⁿ⁺² - 4⁴ⁿ⁺² x 2

= 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) - 11 x 23 x 4⁴ⁿ⁺²

= 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) + (- 11 x 23 x 4⁴ⁿ⁺²)

or 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11  par hypothèse

et   - 11 x 23 x 4⁴ⁿ⁺² est divisible par 11

donc par addition 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) + (- 11 x 23 x 4⁴ⁿ⁺²) est divisible par 11

donc     (3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺²) - (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11

Conclusion :  pour n = 0  P(0) est vraie

     pour tout entier naturel n,  par récurrence  P(n) est vraie

Explications étape par étape

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.