Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, j'ai un problème en Maths Expertes, je n'arrive pas à le résoudre voici le problème : Montrer par récurrence que pour tout entier naturel n 3^n+3 - 4^4n+2 est divisible par 11. Pouvez vous m'aider le plus vite possible s'il vous plait merci d'avance.
Zouwey ^^


Sagot :

Réponse :

Initialisation :  vérifions que P(0) est vraie   3³ - 4² est divisible par 11

27 - 16 = 11   donc  11 est divisible par 11   donc P(0) est vraie

hérédité  :   on suppose que pour tout entier naturel n  P(n) est vraie c'est à dire (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11 et montrons que P(n+1) est vraie aussi

    c'est à dire on veut montrer que  3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺² est divisible par 11

  (3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺²) - (3ⁿ⁺³ - 4⁴ⁿ⁺²) = 3ⁿ⁺⁴ - 3ⁿ⁺³ - 4⁴ⁿ⁺⁴⁺² + 4⁴ⁿ⁺²

= 3ⁿ⁺³(3 - 1) - 4⁴ⁿ⁺²(4⁴ - 1) = 2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(255)

=2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(253 + 2)

= 2 x 3ⁿ⁺³ - 4⁴ⁿ⁺²(11 x 23 + 2) = 2 x 3ⁿ⁺³ - 11 x 23 x 4⁴ⁿ⁺² - 4⁴ⁿ⁺² x 2

= 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) - 11 x 23 x 4⁴ⁿ⁺²

= 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) + (- 11 x 23 x 4⁴ⁿ⁺²)

or 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11  par hypothèse

et   - 11 x 23 x 4⁴ⁿ⁺² est divisible par 11

donc par addition 2 x (3ⁿ⁺³ - 4⁴ⁿ⁺²) + (- 11 x 23 x 4⁴ⁿ⁺²) est divisible par 11

donc     (3⁽ⁿ⁺¹⁾⁺³ - 4⁴⁽ⁿ⁺¹⁾⁺²) - (3ⁿ⁺³ - 4⁴ⁿ⁺²) est divisible par 11

Conclusion :  pour n = 0  P(0) est vraie

     pour tout entier naturel n,  par récurrence  P(n) est vraie

Explications étape par étape

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.