Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonsoir, vous pouvez m'aider pour l'exercice svp?

Bonsoir Vous Pouvez Maider Pour Lexercice Svp class=

Sagot :

Tenurf

Bonjour,

f étant une fonction polynômiale elle est dérivable sur [tex]\mathbb{R}[/tex] et sa dérivée est

[tex]\forall x \in \mathbb{R}\\\\f'(x)=-4x+6=2(3-2x)[/tex]

On peut en déduire son tableau de variations.

[tex]\left|\begin{array}{c|ccc}x&&3/2&&---&---&---&---\\f'(x) &+&0&-\\---&---&---&---\\f(x) &\nearrow&f(3/2)&\searrow\\---&---&---&---\end{array}\right|[/tex]

[tex]f(3/2)=-2(9/4)+6(3/2)-3=-9/2+18/2-6/2=(-9+18-6)/2=3/2[/tex]

2.

[tex]f(2)=-2\times 2^2+6\times 2-3=-8+12-3=1[/tex]

3.

x=3/2 est un axe de symétrie pour le graphe de f

Nous savons que f(2)=1 donc 2 est solution de f(x)=1

et une autre solution est le symétrique de ce point par l'axe x = 3/2 donc qui est 2-2(2-3/2)=2-1=1

Et le tableu de variations de f nous assure qu'il n'y a pas d'autre solution.

4. En utilisant le tableau de variation, et les réponses précédentes, il est facile de trouver que les solutions sont dans l'intervalle [1;2]

5. Elle est ci dessous.

Merci

View image Tenurf
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.