Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonsoir, vous pouvez m'aider pour l'exercice svp?

Bonsoir Vous Pouvez Maider Pour Lexercice Svp class=

Sagot :

Tenurf

Bonjour,

f étant une fonction polynômiale elle est dérivable sur [tex]\mathbb{R}[/tex] et sa dérivée est

[tex]\forall x \in \mathbb{R}\\\\f'(x)=-4x+6=2(3-2x)[/tex]

On peut en déduire son tableau de variations.

[tex]\left|\begin{array}{c|ccc}x&&3/2&&---&---&---&---\\f'(x) &+&0&-\\---&---&---&---\\f(x) &\nearrow&f(3/2)&\searrow\\---&---&---&---\end{array}\right|[/tex]

[tex]f(3/2)=-2(9/4)+6(3/2)-3=-9/2+18/2-6/2=(-9+18-6)/2=3/2[/tex]

2.

[tex]f(2)=-2\times 2^2+6\times 2-3=-8+12-3=1[/tex]

3.

x=3/2 est un axe de symétrie pour le graphe de f

Nous savons que f(2)=1 donc 2 est solution de f(x)=1

et une autre solution est le symétrique de ce point par l'axe x = 3/2 donc qui est 2-2(2-3/2)=2-1=1

Et le tableu de variations de f nous assure qu'il n'y a pas d'autre solution.

4. En utilisant le tableau de variation, et les réponses précédentes, il est facile de trouver que les solutions sont dans l'intervalle [1;2]

5. Elle est ci dessous.

Merci

View image Tenurf