Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
Réponse :
Bonsoir,
Explications étape par étape
[tex]\left\{\begin{array}{ccc}u_0&=&1\\v_0&=&3\\u_{n+1}&=&\dfrac{u_n+3v_n}{4} \\v_{n+1}&=&\dfrac{3u_n+v_n}{4} \\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}u_0+v_0&=&4\\u_{n+1}+v_{n+1}&=&u_n+v_n \\u_{n+1}-v_{n+1} & = & -\dfrac{1}{2} (u_n-v_n)\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}u_0-v_0&=&-3\\u_{n+1}+v_{n+1}&=&4 \\u_{n+1}-v_{n+1}&=&-3*(\dfrac{-1}{2})^n \\\end{array}\right.\\\\[/tex]
2)
[tex]\left\{\begin{array}{ccc}u_0-v_0&=&-3\\2u_{n+1}&=&4-3 (\dfrac{-1}{2})^n\\2v_{n+1}&=&4+3*(\dfrac{-1}{2})^n \\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}u_0-v_0&=&-3\\u_{n+1}&=&2+3 (\dfrac{-1}{2})^{n+1}\\v_{n+1}&=&2-3*(\dfrac{-1}{2})^{n +1}\\\end{array}\right.\\\\[/tex]
De là, on peut déduire u(n) et v(n)
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.