Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjours je galère énormément pour cette exercice je ne comprend rien pouvez vous m’aider

Vrai ou Faux ?
Indiquer si les affirmations suivantes sont vraies ou fausses, puis
justifier.
Soit p et a deux nombres premiers différents et au moins
égaux à 3.
1.p + q est un nombre pair.
2.p + q est un nombre premier.
3.p xq est un nombre premier.
4.p xq est un nombre impair.

Merci d’avance


Sagot :

bjr

Soit p et q deux nombres premiers différents et au moins  égaux à 3.

"au moins égaux à 3" cela signifie qu'on exclut 2, seul nombre premier pair

                      Dans ce qui suit p et q sont impairs

1.p + q est un nombre pair.

vrai

tout nombre impair est de la forme 2n + 1  (n naturel)

si p est est impair il s'écrit 2n + 1

si q est impair il s'écrit 2n' + 1

p + q = 2n + 1 + 2n' + 1 = 2n + 2n' + 2 ) = 2(n + n' + 1)  nombre multiple de 2

                                                                                            donc pair

(la somme de deux nombres impairs est un nombre pair)

2.p + q est un nombre premier.

faux

5 et 3 sont deux nombres premiers, leur somme 8 n'est pas un nombre premier

3.p x q est un nombre premier.

faux

le produit p x q est divisible par p et par q

5 x 3 (15) est divisible par 5 et par 3

4.p x q est un nombre impair.

vrai

p = 2n + 1  ;  q = 2n' + 1

p x q = (2n + 1)(2n' + 1) = 4nn' + 2n + 2n' + 1

                                   = 2(2nn' + n + n') + 1

                               forme 2n" + 1

                               nombre impair

(le produit de deux nombres impairs est impair)

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.