Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjours je galère énormément pour cette exercice je ne comprend rien pouvez vous m’aider

Vrai ou Faux ?
Indiquer si les affirmations suivantes sont vraies ou fausses, puis
justifier.
Soit p et a deux nombres premiers différents et au moins
égaux à 3.
1.p + q est un nombre pair.
2.p + q est un nombre premier.
3.p xq est un nombre premier.
4.p xq est un nombre impair.

Merci d’avance

Sagot :

bjr

Soit p et q deux nombres premiers différents et au moins  égaux à 3.

"au moins égaux à 3" cela signifie qu'on exclut 2, seul nombre premier pair

                      Dans ce qui suit p et q sont impairs

1.p + q est un nombre pair.

vrai

tout nombre impair est de la forme 2n + 1  (n naturel)

si p est est impair il s'écrit 2n + 1

si q est impair il s'écrit 2n' + 1

p + q = 2n + 1 + 2n' + 1 = 2n + 2n' + 2 ) = 2(n + n' + 1)  nombre multiple de 2

                                                                                            donc pair

(la somme de deux nombres impairs est un nombre pair)

2.p + q est un nombre premier.

faux

5 et 3 sont deux nombres premiers, leur somme 8 n'est pas un nombre premier

3.p x q est un nombre premier.

faux

le produit p x q est divisible par p et par q

5 x 3 (15) est divisible par 5 et par 3

4.p x q est un nombre impair.

vrai

p = 2n + 1  ;  q = 2n' + 1

p x q = (2n + 1)(2n' + 1) = 4nn' + 2n + 2n' + 1

                                   = 2(2nn' + n + n') + 1

                               forme 2n" + 1

                               nombre impair

(le produit de deux nombres impairs est impair)

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.