Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonjour je suis en Terminal Spe Maths et je nage un peu sur cet exercice pouvez vous m’aider svp ?

Exercice 1
On considère les suites (un) et (vn) définies par uo = 7 et, pour tout entier naturel n, Un+1 = 0,5un+3 et vn = un-6.
1. Montrer que la suite (vn) est une suite géométrique de raison 0,5 et de premier terme 1.
2. Pour tout entier naturel n, exprimer vn en fonction de n.
3. En déduire, pour tout entier naturel n, une expression de un en fonction de n.
4. On note S = V0 + V1 + ... + V100 la somme des 101 premiers termes de la suite (vn).
(a) Déterminer la valeur de S.
(b) En déduire la valeur de la somme des 101 premiers termes de la suite (un).

Sagot :

Réponse :

U0 = 7

Un+1 = 0.5Un + 3    et  Vn = Un - 6    pour tout entier naturel n

1) montrer que la suite (Vn) est une suite géométrique de raison 0.5 et de premier terme 1

   Vn+1/Vn = (Un+1  - 6)/(Un - 6) = ((0.5Un + 3) - 6)/(Un - 6)

                  = (0.5Un  - 3)/(Un - 6)

                  = 0.5(Un - 6)/(Un - 6) = 0.5

on obtient   Vn+1/Vn = 0.5   donc (Vn) est une suite géométrique de raison

q = 0.5  et de premier terme V0 = U0 - 6 = 7 - 6 = 1

2) pour tout entier naturel n, exprimer Vn en fonction de n

           Vn = V0 x qⁿ  donc  Vn = 1 x (0.5)ⁿ

3) en déduire, pour tout entier naturel n, une expression de Un en fonction de n

  Vn = Un - 6  ⇔ Un = Vn + 6 = 0.5ⁿ + 6

     donc   Un = 0.5ⁿ + 6

Explications étape par étape

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.