Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonjour j'ai un controle la semaine prochaine et nous aurons un exercice dans ce style mais je n'y arrive pas. Pourriez vous m'aider svp

Bonjour Jai Un Controle La Semaine Prochaine Et Nous Aurons Un Exercice Dans Ce Style Mais Je Ny Arrive Pas Pourriez Vous Maider Svp class=

Sagot :

Tenurf

Bonjour,

On imagine que n est un entier strictement supérieur à 1. Sinon il faut consider n différent de 0,-1 et 1 pour que les expressions soient proprement définies.

Perso, pour ce genre de problème, sachant que plus j'écris de calculs et plus la probabilité que j'écrive une connerie augmente, j'essaye de simplifier au maximum et faire le moins de calcul possible.

Par exemple, quand je regarde cette soustraction je trouve que cela se simplifie plutôt bien.

[tex]\dfrac{1}{4(n-1)}-\dfrac{1}{4(n+1)}\\\\=\dfrac{n+1-(n-1)}{4(n+1)(n-1)}\\\\=\dfrac{2}{4(n^2-1)}\\\\=\dfrac{1}{2(n^2-1)}[/tex]

Ben, du coup je pourrais ajouter un autre membre.

[tex]\dfrac{1}{2(n^2+1)}+\dfrac{1}{2(n^2-1)}\\\\=\dfrac{n^2-1+n^2+1}{2(n^2+1)(n^2-1)}\\\\=\dfrac{2n^2}{2(n^4-1)}\\\\=\dfrac{n^2}{(n^4-1)}[/tex]

Et maintenant je dois encore prendre le dernier terme.

[tex]\dfrac{n^2}{(n^4-1)}-\dfrac{1}{n^2}\\\\=\dfrac{n^4-n^4+1}{n^2(n^4-1)}\\\\\large \boxed{\sf \bf =\dfrac{1}{n^2(n^4-1)}}[/tex]

merci

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.