Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Bonsoir je n’y arrive pas alors on m’a conseillé ce site merci d’avance Exercice 3:
Résoudre les équations suivantes :
1) 7x² – 5 = 0
2) 3x2 - 12x+12 = 0
Exercice 4:
Résoudre les inéquations suivantes :
1) -2x² – 2x +12 30
2) -3x2 + 3x - 2<0


Bonsoir Je Ny Arrive Pas Alors On Ma Conseillé Ce Site Merci Davance Exercice 3 Résoudre Les Équations Suivantes 1 7x 5 0 2 3x2 12x12 0 Exercice 4 Résoudre Les class=

Sagot :

Réponse :

EX3

résoudre les équations suivantes

1) 7 x² - 5 = 0 ⇔ x² = 5/7 ⇔ x = √(5/7) = √35)/7 ou  x = - √35)/7

2) 3 x² - 12 x + 12 = 0 ⇔ 3(x² - 4 x + 4) = 0 ⇔3(x - 2)² = 0 ⇔ x - 2 = 0

⇔ x = 2

EX4

Résoudre les inéquations suivantes

1) - 2 x² - 2 x + 12 ≤ 0 ⇔ - 2(x² +  x - 6) ≤ 0 ⇔ - 2(x² +  x - 6 + 1/4 - 1/4) ≤ 0

⇔ - 2(x²+  x + 1/4  - 25/4) ≤ 0 ⇔ - 2((x+1/2)² - 25/4) ≤ 0

⇔ - 2((x+1/2)² - (5/2)²) ≤ 0 ⇔ -2(x + 1/2 + 5/2)(x + 1/2 - 5/2) ≤ 0

⇔ - 2(x + 3)(x - 2) ≤ 0

     x                - ∞               -3                    2                    + ∞

  x+3                          -         0        +                   +  

 x-2                             -                    -         0        +

-2(x+3)(x-2)                  -         0         +         0         -

l'ensemble des solutions est:  S = ]- ∞ ; -3]U[2 ; + ∞[

Explications étape par étape

Tenurf

Bonjour,

Exo 3

1)

[tex]7x^2-5=0<=>7x^2=5\\<=>x^2=\dfrac{5}{7}\\<=>\boxed{x=\pm\sqrt{\dfrac{5}{7}}}[/tex]

2)

[tex]3x^2-12x+12=0\\<=>x^2-4x+4=0\\<=>(x-2)^2=0\\<=>x=2[/tex]

3)

[tex]2u^2-3u+\dfrac{11}{6}=0\\<=> 12u^2-18u+11=0\\\Delta=18^2-4*11*12=-204[/tex]

Le discriminant est négatif, il n'a pas de solutions réelles.

Exo 4

1)

[tex]-2x^2-2x+12=0<=>x^2+x-6=0\\<=>x^2-2x+3x-6=x(x-2)+3(x-2)=(x+3)(x-2)=0[/tex]

La somme des racines est -1=-3+2 et leur produit -6=(-3)*2, c'est comme cela que je factorise, donc...

[tex]-2x^2-2x+12\leq 0\\<=> -2(x-2)(x+3)\leq 0[/tex]

On étudie les signes de x-2 et x+3 on fait un tableau et on trouve les signes de l 'expression, la solution est

[tex]]-\infty;-3]\cup [2;+\infty[[/tex]

Une manière rapide de vérifier que l'on pas écrit trop de conneries est de prendre x = 0, ça fait quelque chose de positif.

2) Le discriminant vaut -15 donc il n'y a pas de racines réelles et l'expression conserve un signe constant.

pour x = 0 ça fait -2, l'inégalité est donc toujours vérifier.

Merci

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.