Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Réponse :
f(x) = (x² + 2 x + 1)e³ˣ⁺⁴
a) montrer que pour tout x de [- 2 ; 0]
f '(x) = (3 x² + 8 x + 5)e³ˣ⁺⁴
f(x) = (x² + 2 x + 1)e³ˣ⁺⁴ ⇔ f(x) = u*v ⇒ f '(x) = u'v + v'u
u = x² + 2 x + 1 ⇒ u' = 2 x + 2
v = e³ˣ⁺⁴ ⇒ v' = 3e³ˣ⁺⁴
f '(x) = (2 x + 2)e³ˣ⁺⁴ + 3(x² + 2 x + 1)e³ˣ⁺⁴
= (2 x + 2 + 3(x² + 2 x + 1)e³ˣ⁺⁴
= (2 x + 2 + 3 x² + 6 x + 3)e³ˣ⁺⁴
= (3 x² + 8 x + 5)e³ˣ⁺⁴
b) étudier le signe de f '(x)
f '(x) = (3 x² + 8 x + 5)e³ˣ⁺⁴ or e³ˣ⁺⁴ > 0 donc le signe de f '(x) dépend du signe de 3 x² + 8 x + 5
f '(x) = 0 ⇔ 3 x² + 8 x + 5 = 0
Δ = 64 - 60 = 4 donc √4 = 2
x1 = - 8 + 2)/6 = - 6/6 = - 1
x2 = - 8 - 2)/6 = - 10/6 = - 5/3
x - 2 - 5/3 - 1 0
f '(x) + 0 - 0 +
donc f '(x) ≥ 0 sur [- 2 ; - 5/3]U[- 1 ; 0]
f '(x) ≤ 0 sur [- 5/3 ; - 1]
Explications étape par étape
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.