Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour je n'arrive pas a faire cet exercice qui est a rendre pour demain. Pouvez vous m'aider ? Merci a tous !

1. (a) Démontrer que si un entier est un muliple de 15, alors il est aussi un multiple de 3 et de 5.

(b) La réciproque semble-t-elle vraie?

2. (a) Les nombres 35 et 6 300 sont-ils divisibles par 7?

(b) A l'aide de la question précédente, démontrer que 6 335 est divisible par 7.

(c) Démontrer que si x et y sont deux nombres entiers divisibles par 7, alors leur somme x + y est divisible par 7.

(d) En écrivant le nombre 6 349 147 comme une somme de quatre multiples de 7, démontrer que 6 349 147 est divisible par 7.

3. Démontrer que si a² est un nombre pair, alors a est également pair.

4. (a) Donner une écriture littérale des multiples de 18.

(b) Démontrer que si un nombre entier est un multiple de 18, alors il est aussi multiple de 3 et de 6.

(c) La réciproque est-elle vraie?​

Sagot :

Réponse :

3. si a n'est pas pair alors a² n'est pas pair

En effet soit a =2n+1 => a² = 4n² + 4n + 1 = 4(n²+n) + 1 => impair

4. soit n = 18.q = 3(6q) => M3

                        = 6(3q) => M6

c) oui

Bonne soirée

Explications étape par étape

View image danielwenin
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.