Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bnojour, quelqu'un peut m'aider a resolver cet exercice? Merci d'avance.

Bnojour Quelquun Peut Maider A Resolver Cet Exercice Merci Davance class=

Sagot :

Réponse :

Explications étape par étape

Question 1 a. applique la propriété des sous espaces vectoriels :

u et v étant deux suites de E, alors pour tous réels x et y on a x u + y v suite de E

1. b. Démontre par récurrence que si [tex]u_{n-1}[/tex] et [tex]u_{n-2}[/tex] sont connus alors [tex]u_n[/tex] est connu

2. a. Soit x et y deux réels tels que pour tout entier n, [tex]x \,p_n\,+\,y\, q_n\,=\,0[/tex]

en particulier [tex]x \,p_0\,+\,y\, q_0\,=\,0[/tex] donc x = 0 et [tex]x \,p_1\,+\,y\, q_1\,=\,0[/tex] donc y = 0

donc p et q sont linéairement indépendants

2. b. soit u une suite de E

Soit v la suite définie pour tout entier n par [tex]v_n\,=\,u_0\,p_n\,+\,u_1\, q_n[/tex]

on a donc [tex]v_0\,=\,u_0[/tex] et [tex]v_1\,=\,u_1[/tex]

Une suite de E est entièrement définie par la connaissance de ses deux premiers termes donc u = v