Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonsoir à vous, je suis actuellement en Seconde et j’ai du mal à faire un exercice, pourriez-vous m’aider je vous prie :

Le professeur de Mathématiques propose l’affirmation << Le produit de deux nombres irrationnels est toujours un nombre rationnel. >>
Josy répond : << Vrai, par exemple, √2 x √2 = 2 ∈ Q >>.
Marc répond << Faux par exemple, √5 x √2 ∉ Q >>.
Quel élève a raison ?

Je vous prie d’agréer mes sincères salutations, bonne soirée à vous et merci se votre réponse.

Sagot :

Réponse :

Explications étape par étape :

■ 2/7 ( = 0,285714285714285714… )

                  est un nombre rationnel

 dont "la partie décimale se répète" !

■ π est un nb irrationnel "célèbre" ;

les √ sont souvent des irrationnels

( mais pas √4 ni √9 ni √169 par exemple

car 4 ; 9 ; et 169 sont des carrés parfaits ! )

Marc a raison car il donne un contre-exemple :

  √5 x √2 = √10 ≈ 3,16227766...

   pas de répétition dans la partie décimale !

■ Josy aurait dû choisir 2 racines carrées différentes

afin de ne pas "tomber dans le panneau",

elle a eu tort de choisir en fait un "cas particulier" ! ☺

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.