Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour, j'ai besoin d'aide vraiment c'est super important pour un exercice de math, ça fait deux jours que je pêche dessus, c'est pour demain aidez moi s'il vous plait. Il concerne les suites, je suis en terminale.Merci par avance.
Le Sujet : On considère la suite (Uₙ) est définie par u₀=4 et pour tout entier naturel n par uₙ₊₁=1/2uₙ+3
1. La suite (Uₙ) est-elle arithmétique ? Est-elle géométrique ?
2. On introduit la suite (wₙ)ₙ∈N de terme général wₙ=uₙ-6
a. Calculer les 5 premiers termes de la suite (wₙ) ? quelle conjecture peut-on faire sur la suite ?
b. Montrer que la suite (wₙ) est géométriquement de raison 1/2
c. En déduire wₙ en fonction de n, puis uₙ en fonction de n
d. Comment contrôler la réponse précédente ?


Sagot :

Réponse :

Explications étape par étape

1. La suite (u_n) n'est ni arithmétique ni géométrique.

 On a u_0 = 4 ; u_1 = 5 ; u_2 = 5,5.

 Tu peux te servir de ces trois termes pour montrer

 a) - qu'on n'ajoute pas le même chose de u_0 à u_1 que de u_1 à u_2 ce qui prouve que (u_n) n'est pas arithmétique

b) - qu'on ne multiplie pas par le même nombre u_0 à u_1 que de u_1 à u_2 ce qui prouve que (u_n) n'est pas géométrique

2) a) Tu dois trouver w_0 = -2 ; w_1 = -1 ; w_2 = -1/2 ; w_3 = -1/4 ; w_4 = -1/8

Ce qui fait penser à une suite géométrique de raison 1/2 et de premier terme -2.

2) b) La méthode qui marche toujours:

- écrire w_(n+1) / w_n

- remplacer w_(n+1) par sa formule en fonction de u_(n+1) puis de u_n

- remplacer w_n par sa formule en fonction de u_n

- et là une simplification doit se faire pour aboutir à un nombre fixe: -1/2, la raison de (w_n).

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.