Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour j’ai un exercice de maths à faire pour lundi et je ne sais pas comment faire pouvez-vous m’aider s’il vous plaît ?

Bonjour Jai Un Exercice De Maths À Faire Pour Lundi Et Je Ne Sais Pas Comment Faire Pouvezvous Maider Sil Vous Plaît class=

Sagot :

Réponse :

étudier la monotonie des suites (Un) ; (Vn) et (Wn)

Un = - n² + 5 n

on utilise la méthode  Un = f(n)

soit f la fonction définie sur l'intervalle [0 ; + ∞[  et (Un) la suite définie par Un = f(n)

étant donné que Un = f(n) où f(x) = - x² + 5 x donc étudions les variations de f sur [0 ; + ∞[

f est dérivable sur [0 ; + ∞[  et f '(x) = - 2 x + 5

      x       0                5/2             + ∞

- 2 x + 5             +        0        -

f '(x) ≥ 0 sur l'intervalle [0 ; 5/2]  ⇒ f est croissante sur [0 ; 5/2]  donc (Un) est croissante sur N ( 0 ≤n≤3)

f '(x) ≤ 0 sur l'intervalle [5/2 ; + ∞[ ⇒ f est décroissante sur [5/2; + ∞[  donc (Un) est décroissante sur Nn≥3

Vn = 5 x 2ⁿ

on utilise la méthode  Vn+1/Vn   lorsque les termes de la suite (Vn) sont strictement positifs on compare Vn°1/Vn par rapport à 1

Vn+1/Vn = 5 x 2ⁿ⁺¹/5 x 2ⁿ = (5 x 2ⁿ) x 2)/(5 x 2ⁿ) = 2

Vn+1/Vn = 2 > 1  donc la suite (Vn) est croissante sur N

Wn = 2 - 3 n

Wn+1 - Wn = 2 - 3(n+1) - (2 - 3 n) = 2 - 3 n - 3 - 2 + 3 n = - 3

Wn+1 - Wn = - 3 < 0  donc la suite (Wn) est décroissante sur N  

Explications étape par étape

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.