Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour. J’aurais besoin d’aide sur cette question sur laquelle je bloque. Merci d’avance

Bonjour Jaurais Besoin Daide Sur Cette Question Sur Laquelle Je Bloque Merci Davance class=

Sagot :

Réponse : Bonjour,

Montrons d'abord que [tex]g \leq m[/tex].

Pour cela, on va comparer leurs carrés.

On a:

[tex]\displaystyle (\sqrt{ab})^{2}=ab\\\left(\frac{a+b}{2}\right)^{2}=\frac{a^{2}+2ab+b^{2}}{4}[/tex]

On fait la différence des deux carrés trouvés précédemment:

[tex]\displaystyle ab-\frac{a^{2}+2ab+b^{2}}{4}=\frac{4ab-a^{2}-2ab-b^{2}}{4}=\frac{2ab-a^{2}-b^{2}}{4}=\frac{-(a-b)^{2}}{4}[/tex]

On a [tex]-(a-b)^{2} \leq 0[/tex], comme c'est un carré, et le dénominateur 4 est un nombre positif.

On a donc:

[tex]\displaystyle ab-\frac{a^{2}+2ab+b^{2}}{4} \leq 0[/tex]

Et donc:

[tex]\displaystyle ab \leq \frac{a^{2}+2ab+b^{2}}{4}\\g^{2} \leq m^{2}[/tex]

Et comme g et m sont des nombres positifs, car a et b sont positifs, alors comme la fonction carré est croissante sur [0; +∞[, alors on en déduit que [tex]g \leq m[/tex].

Il faut montrer que [tex]h \leq g[/tex].

Pour cela, on adopte la même stratégie, en comparant leurs carrés:

[tex]\displaystyle \left(\frac{2ab}{a+b}\right)^{2}=\frac{(2ab)^{2}}{(a+b)^{2}}\\\frac{(2ab)^{2}}{(a+b)^{2}}-(\sqrt{ab})^{2}=\frac{(2ab)^{2}-(\sqrt{ab})^{2}(a+b)^{2}}{(a+b)^{2}}=\frac{(2ab-\sqrt{ab}(a+b))(2ab+\sqrt{ab}(a+b))}{(a+b)^{2}}\\ On \; a \; 2ab+\sqrt{ab}(a+b) \geq 0, \; (a+b)^{2} \geq 0.[/tex]Il faut donc étudier le signe de [tex]2ab-\sqrt{ab}(a+b)[/tex]:

[tex]\displaystyle 2ab-\sqrt{ab}(a+b)=\sqrt{ab}(2\sqrt{ab}-(a+b))\\\sqrt{ab} \geq 0, \; il \; faut \; donc \; etudier \; le \; signe \; de \; 2\sqrt{ab}-(a+b) \\2\sqrt{ab}-(a+b) \leq 2 \left(\frac{a+b}{2}\right)-(a+b)\\ 2\sqrt{ab}-(a+b) \leq 0[/tex]

On a donc que :

[tex]\displaystyle \frac{(2ab)^{2}}{(a+b)^{2}}-(\sqrt{ab})^{2} \leq 0\\ \frac{(2ab)^{2}}{(a+b)^{2}} \leq (\sqrt{ab})^{2}\\ h^{2} \leq g^{2}[/tex]

Comme [tex]h \geq 0[/tex], comme a et b sont strictement positifs, et comme on a dit précédemment, que [tex]g \geq 0[/tex], et que la fonction carré est croissante sur l'intervalle [0; +∞[, on en déduit que [tex]h \leq g[/tex].

On a donc montré que [tex]h \leq g \leq m[/tex].

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.