Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour je ne sais plus quelles étapes utiliser pour résoudre ce problème
Sens de variation
On considère la suite (un) définie, pour tout entier
naturel n > 1, par un= 2n^2 – 3n.
• Démontrer que la suite (un) est croissante.
Merci de votre aide

Sagot :

Bonjour,

Rappel :

[tex]si \: \forall \: n :\: U_{n + 1} - U_{n} \geqslant 0[/tex]

Alors la suite (Un) est croissante

[tex]On \: \: a \: \:U_{n} = 2n {}^{2} - 3n[/tex]

[tex]et \: \: U_{n + 1} = 2(n + 1) {}^{2} - 3(n + 1)[/tex]

[tex]2(n + 1) {}^{2} - 3(n + 1) - (2 {n}^{2} - 3n)[/tex]

[tex] = 2 ({n}^{2} + 2n + 1) - 3n - 3 - 2n {}^{2} + 3n [/tex]

[tex] = 2(n {}^{2} + 2n + 1) - 2n {}^{2} - 3[/tex]

[tex] = 2 {n}^{2} + 4n + 2 - 2 {n}^{2} - 3[/tex]

[tex] = 4n - 1[/tex]

[tex]Or \: \: on \: \: sait \: \: que \: \: n > 1[/tex]

[tex]Donc \: \: U_{n + 1}-U_{n} > 3 > 0[/tex]

Donc la suite (Un) est croissante

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.