Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour je suis en Terminale Général j’aurais besoin d’aide pour l’exercice en pièce jointe s’il vous plaît.

Bonjour Je Suis En Terminale Général Jaurais Besoin Daide Pour Lexercice En Pièce Jointe Sil Vous Plaît class=

Sagot :

Tenurf

Hello,

1. Etape 1 - vrai au rang n = 0

[tex]u_0=0\leq 9[/tex]

C'est vrai pour n = 0

Etape 2 - Supposons que cela soit vrai pour k et démontrons que ça reste vrai pour k+1

En utilisant l'Hypothèse de récurrence est [tex]u_k\leq 9[/tex] nous pouvons écrire

[tex]u_{k+1}=\dfrac{2}{3}u_k+3\leq \dfrac{2}{3}\times9+3=6+3=9[/tex]

Donc c'est vrai eu rang k+1.

Etape 3 - Conclusion

Nous venons de démontrer que pour tout n entier [tex]u_n\leq 9[/tex]

2.

Prenons n entier quelconque

[tex]u_{n+1}-u_n=\dfrac{2}{3}u_n+3-u_n\\\\=\dfrac{2-3}{3}u_n+3\\\\=-\dfrac{1}{3}u_n+3\geq \dfrac{-1*9}{3}+3=0[/tex]

Donc [tex]u_{n+1}-u_n[/tex] est positif.

3.

Donc [tex](u_n)[/tex] est croissante.

L'exo est finit mais on peut aller plus loin.

Comme la suite est majorée et croissante elle converge vers une limite l telle que

[tex]l=\dfrac{2}{3}l+3\\\\\dfrac{1}{3}l=3\\\\l = 9[/tex]

donc le suite [tex](u_n)[/tex] converge vers 9.

Merci

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.