Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour je suis en première, j'ai un devoir pour demain pourriez-vous m'aider svp ? C'est sur le polynôme du second degré. J'aurai besoin d'aide pour le 2 et le 3 SVP. (avec tout écrit, la figure..., pour que je puisse bien comprendre. Merci d'avance

Bonjour Je Suis En Première Jai Un Devoir Pour Demain Pourriezvous Maider Svp Cest Sur Le Polynôme Du Second Degré Jaurai Besoin Daide Pour Le 2 Et Le 3 SVP Ave class=

Sagot :

Réponse :

a) exprime l'aire des carrés AMCD et MBEF en fonction de x

A(amcd) = x²

A(mbef) = (10 - x)² = 100 - 20 x + x²

b) prouver que la somme des aires des 2 carrés est f(x) = 2 x²-20 x+100

A(amcd) + A(mbef) = x² + 100 - 20 x + x²

                             = 2 x² - 20 x + 100

c) exprimer f sous la forme canonique

   f(x) = 2 x² - 20 x + 100

        = 2( x² - 10 x + 50)

        = 2(x² - 10 x + 50 + 25 - 25)

        = 2(x² - 10 x + 25 + 25)

        = 2((x - 5)² + 25)

d'où  f(x) = 2(x - 5)² + 50  

d) en déduire la position du point M pour que la somme des aires des deux carrés soit minimum

     le sommet  S(5 ; 25) représente le minimum de la fonction f

donc pour x = 5  la fonction f a pour minimum 25

donc la position du point M est à 5 m du point A

2) obtient-on un résultat analogue en calculant le minimum de la somme des aires de deux disques de diamètres respectifs (AM) et (MB) ?

A1 = π x²/4

A2 = π(10 - x)²/4

................................

A1+A2 = π x²/4 + (π(10 - x)²/4 = π/4)(x² + 100 - 20 x + x²) = π/4(2 x² - 20 x + 100) = 2π/4((x - 5)² + 25)

      = π/2(x - 5)² + 39.25

on obtient la même position du point M qui est situé à 5 m du point A mais donnant un mimimum de f de 39.25

3) démontrer que la somme des aires du carré et du disque est minimum lorsque le rayon du disque est égal à AM = 5

Acarré = x² = 25

Adisque = π(10 - 5)²/4 = π/4)(100 - 20* 5 + 25)

.....................................................

Acarré + Adisque = 25 + π/4)* 25 - (π/4)* 20* 5 + (π/4)* 100 ≈ 30

         

Explications étape par étape

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.