Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Bonjour ! C'est assez facile mais il faut connaitre les formules d'analyse combinatoire.
Ici on aura besoin de la formule d'arrangement avec répétition, elle peut sembler complexe mais lis la calmement et tu verras qu'elle est compréhensible, pense aussi à vérifier dans ton cours si tu ne les as pas et si vous ne l'avez pas déjà vu ^^
[tex]A_{n}^{m}= n.(n-1).(n-2).(...).(n-m+2).(n-m+1)[/tex]
[tex]m[/tex] = nombre de facteur qu'on veut à la fin (5 dans ton exo)
[tex]n[/tex] = panel de choix, nombre de "choix" (7 dans ton exo, car 7 lettres dans
MATHEUX)
Il y a une forme plus courte de la formule qui utilise les intégrale (n!)
[tex]A_{n}^{m}=\frac{n!}{(n-m)!}[/tex]
Pour ton exercice:
Avec la première forme de la formule:
[tex]A_{7}^{5} = 7.6.5.4.3 = 2520[/tex]
Car pour la première lettre il y a le choix entre les 7 lettres de MATHEUX, pour la seconde il ne reste plus que 6 choix, puis 5, puis 4, puis 3.
Avec la seconde forme de la formule:
[tex]A_{7}^{5} = \frac{7!}{(7-5)!} = \frac{7!}{2!} = \frac{7.6.5.4.3.2.1}{2.1} = 2520[/tex]
Elle est plus simple car tu peux l'entrer facilement sur ta calculatrice ;)
Le résultât est donc 2520 mots possibles
Voilà ! J'espère t'avoir aidé, dis moi en commentaire si tu as mal compris quelque chose.
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.