Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonsoir, est-ce que vous pouvez m’aider s’ils vous plaît ?

Bonsoir Estce Que Vous Pouvez Maider Sils Vous Plaît class=

Sagot :

Tenurf

Bonjour, nous pouvons regarder les premiers termes.

[tex]u_0=6\\\\u_1=3*6+5=18+5=23\\\\u_2=3*23+5=69+5=74[/tex]

Si [tex](v_n)[/tex] est géométrique de raison b, nous avons

[tex]v_{n+1}=u_{n+1}-a=3u_n+5-a=b(u_n-a)=bu_n-ba[/tex]

et donc b=3 et 5-a=-ba

<=> ab=a-5 ***On remplace b par sa valeur***

3a=a-5 <=> 2a=-5 <=> [tex]\boxed{a=-\dfrac{5}{2}}[/tex]

Et la raison b est égal à 3.

2)

[tex]v_n=3^nv_0=3^n(u_0+\dfrac{5}{2})=3^n(\dfrac{12+5}{2})=\dfrac{17}{2}3^n\\\\v_n=un+\dfrac{5}{2} \\ \\\\\boxed{u_n=\dfrac{17}{2}3^n-\dfrac{5}{2}}[/tex]

[tex]\displaystyle \sum_{k=0}^{k=n} \ {u_k}= \sum_{k=0}^{k=n} \ {\dfrac{17}{2}3^k-\dfrac{5}{2}} = \dfrac{17}{2}\times\dfrac{3^{n+1}-1}{3-1}-\dfrac{5}{2}\times (n+1)\\\\\boxed{=\dfrac{17}{4}(3^{n+1}-1)-\dfrac{5}{2}(n+1)}[/tex]

Merci

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.