Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour pouvais vous m’aider s’il vous plaît c’est important merci d’avance !!

Bonjour Pouvais Vous Maider Sil Vous Plaît Cest Important Merci Davance class=

Sagot :

Bonjour !

Alors, le but de l'exo est de comprendre si E,F et G sont sur un cercle d'n rayon inconnu et de centre A.

Imaginons que c'est le cas. Alors [AE], [AF] et [AG] sont des rayons de ce cercle.

Et on sait que tous les rayons d'un cercle sont égaux entre eux (de même longueur). En gros : [AE] = [AF] = [AG].

Il suffit donc de mesurer les distances AE, AF et AG et vérifier qu'elles sont égales, en utilisant la formule de la distance euclidienne.

Distance euclidienne :

Soient deux points A(x1,y1) et B(x2,y2) donnés. la distance entre ces deux points est donnée par la formule :

[tex]Dist_a,b = \sqrt{(x_1-x_2)^{2} + (y_1-y_2)^{2} }[/tex]

Donc par exemple la distance AE sera égale à :

[tex]AE = \sqrt{(8-11)^{2} + (-2 - 0)^{2}} = \sqrt{(-3)^{2} + (-2)^{2} } = \sqrt{9 + 4} = \sqrt{13}[/tex]

Ensuite :

[tex]AF = \sqrt{(8-6)^{2} +(-2-1)^{2} } = \sqrt{(2)^{2} +(-3)^{2} } = \sqrt{4 +9 } = \sqrt{13}[/tex]

[tex]AG = \sqrt{(8-5)^{2} +(-2-(-4))^{2} } = \sqrt{(3)^{2} +(2)^{2} } = \sqrt{9 +4} = \sqrt{13 }[/tex]

Les distances sont toutes égales, les points sont situés sur le cercle de centre A et de rayon √(13).

Voilà !

bjr

si les points sont sur un même cercle de centre A

[AF] ; [AF] et [AG] sont trois rayons de ce cercle

il suffit de calculer les longueurs AE ; AF ; AG

la formule est d(A,B) = √[(xB - xA)² + (yB - yA)²]

calcul de AE²

AE² = (xE - xA)² + (yE - yA)²

      =  (11 - 8)² + (0 - (-2) )² = 3² + 2² = 13

calcul de AF²

AF² = (6 - 8)² + (1 - (-2))²

       = 2² + 3² = 13

calcul de AG²

AG² = (5 - 8)² + (-4 - (-2))²

      = 3² + 2² = 13

ces trois longueurs ont le même carré, elles sont égales

elles valent √13

Les points E, F et G sont à la même distance de A, donc sur un cercle de centre A

√13 est la longueur du rayon du cercle

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.