Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonsoir, j’ai besoin d’aide pour cet exercice. Merci d’avance.

Bonsoir Jai Besoin Daide Pour Cet Exercice Merci Davance class=

Sagot :

Explications étape par étape:

Bonjour, le paramètre m ne doit pas poser de problème, il suffit de résoudre l'équation traditionnellement. Tu commences par calculer le discriminant : delta = b^2 - 4ac, donc ici delta = (m+1)^2 - 16 = m^2 + 2m - 15.

À présent, 3 possibilités : Si delta < 0, pas de solution, si delta = 0 une unique solution, si delta > 0, 2 solutions.

On remarque que (m+1)^2 - 16 = (m+1)^2 - 4^2 = (m-3)*(m+5) (identité remarquable).

Donc delta = 0 équivaut à m = -5 ou 3.

Avec un discriminant nul, une unique solution x = -b/2a = (m+1) / 2 = - 2 ou 2.

De même, pour n'avoir aucune solution, on doit avoir delta < 0. Le seul moyen d'avoir un produit de 2 facteurs négatif, c'est : 1er facteur positif et 2e facteur négatif, ou l'inverse (car + * + = +, et - x - = +).

Donc m-3 > 0 et m+5 < 0, ou m-3 < 0 et m+5 > 0. La 1re possibilité est impossible, car on aurait m>3 et m < -5. Il reste donc la 2e, m<3 et m>-5, d'où m € ]-5 ; 3[.

PS : Tu aurais aussi pu dire que comme le coefficient devant m^2 vaut 1, il s'agit d'une parabole orientée vers le haut, donc négative entre les 2 racines (à condition de l'avoir vu en cours)

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.