Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Bonjour !
3. On cherche à savoir le milieu K de [AB]. On sait que la formule pour trouver le milieu d'un segment à partir de ses cordonnées est :
[tex]K\left(\begin{array}{ccc}\frac{xA+xB}{2}\\\\\frac{yA+yB}{2}\end{array}\right)\\\\[/tex]
On sait que les coordonnées de A et B sont :
[tex]A\left(\begin{array}{ccc}-3\\-3\\\end{array}\right)[/tex] [tex]B\left(\begin{array}{ccc}3\\-1\\\end{array}\right)[/tex]
Donc, pour trouver les coordonnées de K (le milieu du segment [AB]), on a juste à remplacer [tex]x[/tex] et [tex]y[/tex] dans la formule par les coordonnées de A et B :
[tex]K\left(\begin{array}{ccc}\frac{(-3)+3}{2}\\\\\frac{(-3)+(-1)}{2}\end{array}\right) = \left(\begin{array}{ccc}\frac{0}{2}\\\\\frac{-4}{2}\end{array}\right) = \left(\begin{array}{ccc}0\\-2\\\end{array}\right)[/tex]
Donc [tex]K\left(\begin{array}{ccc}0\\-2\\\end{array}\right)[/tex].
Maintenant, cherchons L, le milieu de [AD]. On reprend exactement la même méthode. Les cordonnées de A et D sont :
[tex]A\left(\begin{array}{ccc}-3\\-3\\\end{array}\right)[/tex] [tex]D\left(\begin{array}{ccc}-4\\0\\\end{array}\right)[/tex]
Puis, la formule :
[tex]L\left(\begin{array}{ccc}\frac{xA+xD}{2}\\\\\frac{yA+yD}{2}\end{array}\right)\\\\[/tex]
On remplace par les cordonnées :
[tex]L\left(\begin{array}{ccc}\frac{(-3)+(-4)}{2}\\\\\frac{(-3)+0}{2}\end{array}\right) = \left(\begin{array}{ccc}\frac{-7}{2}\\\\\frac{-3}{2}\end{array}\right) = \left(\begin{array}{ccc}-3,5\\-1,5\\\end{array}\right)[/tex]
Donc [tex]L\left(\begin{array}{ccc}-3,5\\-1,5\\\end{array}\right)[/tex].
4. a) On sait que l'équation réduite d'une droite se présente sous la forme [tex]y = ax+ b[/tex] .
En premier lieu, nous allons chercher [tex]a[/tex]. Pour ce faire, il faudra utiliser la formule :
[tex]a = \frac{yB-yA}{xB-xA}[/tex]
On remplace par les cordonnées :
[tex]a = \frac{(-1)-(-3)}{3-(-3)}\\\\a= \frac{2}{6} =\frac{1}{3}[/tex]
On connait donc la valeur de a.
Enfin, pour connaître la valeur de b, on résout l'équation :
[tex]y = ax+ b[/tex]
Ici, [tex]y[/tex] et [tex]x[/tex] peuvent être remplacés par les cordonnées de A ou de B. Dans ce cas, on va choisir ceux de B.
Cela nous fait :
[tex]y = ax+ b\\\\-1=\frac{1}{3} *3+b\\\\-1=1+b\\\\-1-1=b\\\\-2=b\\\\b=-2[/tex]
Soit , [tex]y = \frac{1}{3}x - 2[/tex]
Voilà !
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.