Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

bonjour s'il voulait de veux de l'aide pour comprendre cette exercice. Merci d'avance. ​

Bonjour Sil Voulait De Veux De Laide Pour Comprendre Cette Exercice Merci Davance class=

Sagot :

MPower

Réponse :

Bonjour,

Pour résoudre cet exercice, il est recommandé de tracer un schéma.

a) On sait que (AB) ⊥ [CD] (car ABC est rectangle en B) et BC = BD.

Or si une droite est perpendiculaire et passe par le milieu d'un segment, alors elle représente sa médiatrice.

(AB) est la médiatrice de [CD].

b) Comme (AB) est la médiatrice de [CD], alors les extrémités de ce segment sont équidistants au point A de la droite.

On a ainsi AC = AD

On constate que dans le triangle ADC, AC = AD.

Or si un triangle possède deux côtés égaux, alors il est isocèle.

ADC est isocèle en A.

c) i.

On sait que les droites (AM) et (CD) sont parallèles et traversées par (AC).

Or si deux droites sont parallèles, alors les angles alternes internes qu'elles forment sont de même mesure.

Donc MAC = ACB

ii) S'ils sont superposables, alors ils sont forcément égaux.

On sait déjà que AC = AD.

Il nous reste à prouver que MC = AB, et AM = BD.

Les segments [MC] et [AB] sont délimités par les droites parallèles (AM) et (CD). Ils sont alors de même longueur.

Ensuite d'après l'énoncé, le point M est placé de sorte que AM = BC.

Comme B est le milieu de [CD], alors BC = BD.

Donc AM est aussi égal à BD soit (AM = BC = BD).

Enfin comme les triangles AMC et ABD sont égaux (côtés homologues égaux deux à deux), alors ils sont superposables.

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.