Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Réponse :
1) vérifier que pour x = 1, les expressions A et B sont égales
A = (3 x + 5)(5 x - 4) et B = (3 x + 5)² - (3 x + 5)(9 - 2 x)
pour x = 1 ⇒ A = (3*1 + 5)(5*1 - 4) = 8 * 1 = 8
pour x = 1 ⇒ B = (3*1+5)² - (3*1 + 5)(9 - 2*1) = 64 - 8 * 7 = 64 - 56 = 8
donc on a bien que pour x = A ; A = B = 8
2) démontrer que A et B sont égales quelle que soit la valeur de x
A = (3 x + 5)(5 x - 4)
B = (3 x + 5)² - (3 x + 5)(9 - 2 x)
= (3 x + 5)(3 x + 5 - 9 + 2 x)
= (3 x + 5)(5 x - 4)
donc A = B quelle que soit la valeur de x
Explications étape par étape
Réponse :
A = (3x + 5) (5x - 4) et B = (3x + 5)^2 - (3x + 5)(9 - 2x)
1. Vérifier que pour x = 1, les expressions A et B sont égales.
tu remplaces x par 1 dans A et B, tu calcules
A =(3*1+5)(5*1-4)
A= (3+5)(5-4)
A = 8*1=8
B = (3*1+5)²-(3*1+5)(9-2*1)
B=(3+5)²-(3+5)(9-2)
B = 8²-(8*7)
B = 64-56=8
2. Démontrer que A et B sont égales, quelle que soit la valeur de x.
A = (3x + 5) (5x - 4)
A = 15x²-12x+25x-20
A = 15x²+13x-20
B= (3x + 5)^2 - (3x + 5)(9 - 2x)
B=9x²+30x+25-(27x-6x²+45-10x)
B = 9x²+30x+25-27x+6x²-45+10x
B = 9x²+6x²+30x-27x+10x+25-45
B = 15x²+13x-20
-----> A et B sont égales, quelle que soit la valeur de x
Explications étape par étape
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.