Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Réponse :
EX2
u: x → x(ln x)²
v: x → e⁻ˣ
4) donner des valeurs approchées des nombres réels
u(1/e²) , v(1/2) et v(1)
u(1/e²) = 1/e²)(ln 1/e²)²
= 1/e²[ln 1 - ln e²]² or ln 1 = 0
= 1/e²(- ln e²)² or e² ≈ 7.389 et ln e² = 2
= 1/7.389)(- 2)² ≈ 0.5
v(1/2) = e⁻¹/² = 1/e¹/² ≈ 0.6
v(1) = e⁻¹ = 1/e ≈ 0.4
en déduire que u(x) < v(x) pour tout x ∈ ]0 ; 1/2]
u(1/2) = 1/2(ln1/2)² ≈ 0.24
v(1/2) = e⁻¹/² ≈ 0.6
donc u(1/2) < v(1/2) ⇔ u(x) < v(x) pour tout x ∈ ]0 ; 1]
pour tout x ∈ [1/2 ; 1[ on a; u(x) < v(x) car u(1/2) < v(1/2)
Explications étape par étape
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.