Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.


Bonjour,

J'aimerais un peu de votre aide pour vérifier si ce que j'ai fait est bon (surtout au niveau des notations) ainsi que de l'aide sur les deux dernières questions (notamment la 4).
Il s'agit d'un chapitre sur les Variables Aléatoires (De prépa scientifiques mais il me semble que l'on fait déjà ça en première S sauf la question 4).
Normalement mes calculs d'espérances / variances /écarts types sont bons, je les ai vérifié avec la calculatrice.

Une expérience aléatoire consiste à lancer deux fois un dé supposé équilibré (et je suppose que c'est un dé à 6 faces). On définit quatre variables aléatoires:
-X désigne le résultat du premier dé.
-Y désigne le résultat du second.
-S = X + Y
-D = X - Y

1) Déterminer les lois de X, Y, S et D.
J'ai fait les tableaux des lois de probabilités en joint.
J'en conclu que:
- X est une loi uniforme que l'on peut noter [tex]X \rightsquigarrow \mathcal{U}([\![1,6]\!])[/tex].
- Y est une loi uniforme: [tex]Y \rightsquigarrow \mathcal{U}([\![1,6]\!])[/tex]
- S est une loi normale: [tex]S \rightsquigarrow \mathcal{N}(E[S], \sigma_S^2)[/tex]
- D est une loi normale: [tex]D \rightsquigarrow \mathcal{N}(E[D], \sigma_D^2)[/tex]

2) Calculer leurs espérances.

-[tex]E[X] = \frac{6+1}{2} = 3,5[/tex]
-[tex]E[Y] = \frac{6+1}{2} = 3,5[/tex]
-[tex]E[S] = \sum_{i=1}^{11} s_i*p_i = 7[/tex]
-[tex]E[D] = \sum_{i=1}^{11} d_i*p_i = 0[/tex]

3) Calculer leurs variances et leurs écarts-types.

-[tex]V_X = \frac{6^2-1}{12} = \frac{35}{12}[/tex]
-[tex]V_Y = \frac{6^2-1}{12} = \frac{35}{12}[/tex]
-[tex]V_S = \sum_{i=1}^{11} p_i(s_i - E[S])^2 = \frac{210}{36} = \frac{35}{6}[/tex]
-[tex]V_D = \sum_{i=1}^{11} p_i(d_i - E[D])^2 = \sum_{i=1}^{11}p_i\cdot d_i^2 = \frac{35}{6} [/tex]

-[tex]\sigma_X = \sqrt{V_X} \simeq 1,7[/tex]
-[tex]\sigma_Y = \sqrt{V_Y} \simeq 1,7[/tex]
-[tex]\sigma_S = \sqrt{V_S} \simeq 2,4[/tex]
-[tex]\sigma_D = \sqrt{V_D} \simeq 2,4[/tex]

4) Calculer Cov(X, Y), Cov(X, S) et Cov(S, D).

Je ne sais pas du tout ce que Cov() représente... (J'ai un cours que le prof nous a jeté à la gueule début juillet sur les VAR mais ce n'est pas dedans...)

5) X et S sont-elles indépendantes ? S et D sont-elles indépendantes ?

On peut calculer tous les cas possibles et vérifier que:
[tex]p([X = x_i]\cap[S = s_j]) = p([X = x_i])\cdot p([S = s_j])[/tex]
Mais ça fait 66 calculs de ce type pour X et S et 121 calculs pour S et D...
Il n'y aurait pas une autre méthode plus efficace ? On ne va pas se mentir, je n'ai pas que ça à faire que faire 187 calculs de collégiens...

Merci de votre aide,
Thomas

Bonjour Jaimerais Un Peu De Votre Aide Pour Vérifier Si Ce Que Jai Fait Est Bon Surtout Au Niveau Des Notations Ainsi Que De Laide Sur Les Deux Dernières Questi class=

Sagot :

Réponse :

Pour la covariance il faut utiliser la formule Cov(X,Y)=E(XY)-E(X)*E(Y)

pour l'espérance de XY tu dois la calculer en utilisant les intégrales.

si tu trouves que l'espérance E(XY)=E(X)*E(Y) alors la covariance sera nulle et tes variables X et Y seront indépendantes.

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.