Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour, J'ai essayer de resoudre ce calcul plusieurs fois et je me perds toujours dans les derives.. Merci

Bonjour Jai Essayer De Resoudre Ce Calcul Plusieurs Fois Et Je Me Perds Toujours Dans Les Derives Merci class=

Sagot :

Bonsoir,

L'équation de la tangente au graphe de F en 0 est : [tex]y=F'(0)(x-0)+F(0)[/tex].

La seule difficulté est donc de déterminer F', car F(0)=4.

F est dérivable car f l'est (la partie de l'énoncé qu'on voit ne le précise pas mais on le voit dans les réponses possibles).

Pour x réel :

[tex]F'(x)=2[f(f(x)+1)] \times G'(x)[/tex]

où [tex]G(x)=f(f(x)+1)[/tex].

On a, pour x réel : [tex]G'(x)=f'(f(x)+1) \times f'(x)[/tex]

d'où finalement :

[tex]\forall x \in\mathbb{R}, F'(x)=2[f(f(x)+1)] \times f'(f(x)+1) \times f'(x)[/tex]

Il suffit de remplacer x par 0 :

[tex]F'(0)=2[f(1)] \times f'(1) \times f'(0) \iff F'(0)=4f'(0)f'(1)[/tex].

L'équation recherchée est donc : [tex]\boxed{y=4f'(0)f'(1)x+4}[/tex]

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.