Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Bonsoir,
L'équation de la tangente au graphe de F en 0 est : [tex]y=F'(0)(x-0)+F(0)[/tex].
La seule difficulté est donc de déterminer F', car F(0)=4.
F est dérivable car f l'est (la partie de l'énoncé qu'on voit ne le précise pas mais on le voit dans les réponses possibles).
Pour x réel :
[tex]F'(x)=2[f(f(x)+1)] \times G'(x)[/tex]
où [tex]G(x)=f(f(x)+1)[/tex].
On a, pour x réel : [tex]G'(x)=f'(f(x)+1) \times f'(x)[/tex]
d'où finalement :
[tex]\forall x \in\mathbb{R}, F'(x)=2[f(f(x)+1)] \times f'(f(x)+1) \times f'(x)[/tex]
Il suffit de remplacer x par 0 :
[tex]F'(0)=2[f(1)] \times f'(1) \times f'(0) \iff F'(0)=4f'(0)f'(1)[/tex].
L'équation recherchée est donc : [tex]\boxed{y=4f'(0)f'(1)x+4}[/tex]
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.