Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, J'ai essayer de resoudre ce calcul plusieurs fois et je me perds toujours dans les derives.. Merci

Bonjour Jai Essayer De Resoudre Ce Calcul Plusieurs Fois Et Je Me Perds Toujours Dans Les Derives Merci class=

Sagot :

Bonsoir,

L'équation de la tangente au graphe de F en 0 est : [tex]y=F'(0)(x-0)+F(0)[/tex].

La seule difficulté est donc de déterminer F', car F(0)=4.

F est dérivable car f l'est (la partie de l'énoncé qu'on voit ne le précise pas mais on le voit dans les réponses possibles).

Pour x réel :

[tex]F'(x)=2[f(f(x)+1)] \times G'(x)[/tex]

où [tex]G(x)=f(f(x)+1)[/tex].

On a, pour x réel : [tex]G'(x)=f'(f(x)+1) \times f'(x)[/tex]

d'où finalement :

[tex]\forall x \in\mathbb{R}, F'(x)=2[f(f(x)+1)] \times f'(f(x)+1) \times f'(x)[/tex]

Il suffit de remplacer x par 0 :

[tex]F'(0)=2[f(1)] \times f'(1) \times f'(0) \iff F'(0)=4f'(0)f'(1)[/tex].

L'équation recherchée est donc : [tex]\boxed{y=4f'(0)f'(1)x+4}[/tex]

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.