Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Bonsoir,
Pour appliquer la méthode de newton, tu dois créer une suite qui converge vers la solution.
Si tu cherches la solution approchée d'une fonction du type g(x) = ax² + bx + c = 0, par exemple, alors ta suite est de la forme [tex]x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = x_k - \frac{ax^2+bx+c}{2ax+b}[/tex].
Dans le cas de ton exercice on étudie donc la suite [tex]f: x \mapsto x^4 + x - 4[/tex]
On obtient donc la suite suivante:
[tex]x_{k+1} = x_k - \frac{x^4 + x - 4}{4x_k^3+1}[/tex] avec [tex]x_0 = 1[/tex]
On peut donc calculer:
[tex]\boxed{x_1 = 1 - \frac{1+1-4}{4+1} = \frac{7}{5}}[/tex]
Si on injecte [tex]x_1[/tex] dans l'équation on se rencontre que cette valeur est très mal approchée: [tex]x_1^4 + x_1 = 5,2416[/tex]
Par contre si on continue:
[tex]x_2 \simeq 1,296\\\\x_2^4 + x_2 \simeq 4,117\\\\x_3 \simeq 1,284\\\\x_3^4 + x_3 \simeq 4,002[/tex]
Ici on voit bien qu'on se rapproche de la bonne valeur est particulièrement rapidement ce qui est exceptionnel.
J'espère que tu as compris globalement la méthode. C'est une méthode qu'on utilise en physique essentiellement et en supérieur on doit être capable de faire un programme permettant d'appliquer cette méthode.
Bonne soirée,
Thomas
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.