Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour,

Pour la question 2, je n'arrive pas du tout a montré que la fonction est surjective pour ainsi montrer quelle est bijective.

Et pour la question 3, il fraudait la réciproque de la fonction, on m'a dit que je la trouverais en montrant que la fonction et surjective, or je bloque la dessus.

Merci beaucoup de m'aider :-).


Bonjour Pour La Question 2 Je Narrive Pas Du Tout A Montré Que La Fonction Est Surjective Pour Ainsi Montrer Quelle Est Bijective Et Pour La Question 3 Il Fraud class=

Sagot :

Bonjour,

2) On peut montrer l'injectivité en même temps que la surjectivité.

La surjectivité se montre en prenant deux éléments  [tex](a,b) \in \mathbb{R}^2[/tex] et en montrant qu'ils admettent (au moins !) un antécédent par f.

On aura l'injectivité si on prouve que cet antécédent est unique.

On cherche donc [tex](x,y) \in \mathbb{R}^2[/tex] tels que :

[tex]f((x,y))=(a,b) \iff \left \{ {{2x+3y=a} \atop {x+my=b}} \right. \iff \left \{ {{2x+3y=a} \atop {(m-\frac{3}{2})y=b-\frac{a}{2}} \right.[/tex]

Si [tex]m=\frac{3}{2}[/tex] il n'y a pas de solution si [tex]b-\frac{a}{2} \not =0[/tex] et une infinité sinon puisque y est alors quelconque.

Mais si [tex]m \not =\frac{3}{2}[/tex] alors le système possède une unique solution (système de Cramer).

Ainsi, f est bijective ssi [tex]\boxed{m\not =\frac{3}{2}}[/tex].

3) Sa réciproque est alors obtenue en résolvant le système : [tex]f^{-1} : (a,b) \mapsto (\frac{1}{2}(a-3\frac{2b-a}{2m-3}),\frac{2b-a}{2m-3})[/tex].

On peut vérifier [tex]f \circ f^{-1}=id[/tex] et [tex]f^{-1} \circ f=id[/tex].

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.