Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Réponse : Bonjour,
Soit X la variable aléatoire donnant le nombre de boules vertes tirées, pour n tirages.
Alors X suit la loi binomiale de paramètres n et [tex]p=\frac{3}{4}[/tex].
La probabilité d'avoir au moins une boule verte est [tex]P(X \geq 1)[/tex], et:
[tex]\displaystyle P(X \geq 1)=1-P(X=0)=1-\left(\frac{3}{4}\right)^{0} \times \left(\frac{1}{4}\right)^{n}=1-\left(\frac{1}{4}\right)^{n}[/tex]
On cherche donc n tel que:
[tex]\displaystyle 1-\left(\frac{1}{4}\right)^{n} > 0,999\\\left(\frac{1}{4}\right)^{n} < 0,001\\ e^{n \ln(\frac{1}{4})} < 0,001\\ \ln(e^{n \ln(\frac{1}{4})}) < \ln(0,001)\\n \ln\left(\frac{1}{4}\right) < \ln(0,001)\\ n > -\frac{\ln(0,001)}{\ln(4)} \approx 4,98[/tex]
On doit donc tirer 5 fois une boule, pour que la probabilité d'avoir au moins une boue verte soit supérieure à 99,9%.
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.