Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Salut qui peut m'aider s'il vous plaît

Salut Qui Peut Maider Sil Vous Plaît class=

Sagot :

Bonjour,

1) Il s'agit de développer l'expression de droite :

[tex](x+1)(y+1)=xy+x+y+1[/tex]

et de même : [tex](x-1)(1-y)=x-xy-1+y[/tex].

2) On remarque d'abord que la fraction a un sens car [tex]xy \not =-1[/tex] puisque [tex]|x|<1[/tex] et [tex]|y|<1[/tex].

On élève ensuite au carré pour faire disparaître la valeur absolue.

On veut donc montrer : [tex]\frac{(x+y)^2}{(1+xy)^2} <1[/tex].

On s'inspire de la question précédente :

[tex](x+y)^2-(1+xy)^2=x^2+2xy+y^2-1-x^2y^2-2xy=(x^2-1)(1-y^2)[/tex].

(Il s'agit en fait de la deuxième égalité de 1) appliquée à [tex]x^2[/tex] et [tex]y^2[/tex].)

Ainsi :

[tex]\frac{(x+y)^2}{(1+xy)^2}=\frac{(x^2-1)(1-y^2)+(1+xy)^2}{(1+xy)^2}=\frac{(x^2-1)(1-y^2)}{(1+xy)^2}+1[/tex].

Déterminons le signe de la fraction :

- [tex]x^2<1[/tex] par hypothèse, donc [tex]x^2-1<0[/tex]

- [tex]y^2<1[/tex] donc [tex]1-y^2>0[/tex]

- et [tex](1+xy)^2 >0[/tex] comme carré.

Ainsi : [tex]\frac{(x^2-1)(1-y^2)}{(1+xy)^2} <0[/tex] d'où : [tex]\frac{(x^2-1)(1-y^2)}{(1+xy)^2} +1 =\frac{(x+y)^2}{(1+xy)^2}<1[/tex].

La fonction racine carrée étant croissante (et les termes positifs) : [tex]\boxed{\left|\frac{x+y}{1+xy} \right|<1}[/tex].

Rq : Si l'on n'avait pas pensé à élever au carré, il aurait fallu faire deux fois un raisonnement analogue. On aurait alors utilisé les deux égalités du 1) telles quelles.

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.