Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Salut qui peut m'aider s'il vous plaît

Salut Qui Peut Maider Sil Vous Plaît class=

Sagot :

Bonjour,

1) Il s'agit de développer l'expression de droite :

[tex](x+1)(y+1)=xy+x+y+1[/tex]

et de même : [tex](x-1)(1-y)=x-xy-1+y[/tex].

2) On remarque d'abord que la fraction a un sens car [tex]xy \not =-1[/tex] puisque [tex]|x|<1[/tex] et [tex]|y|<1[/tex].

On élève ensuite au carré pour faire disparaître la valeur absolue.

On veut donc montrer : [tex]\frac{(x+y)^2}{(1+xy)^2} <1[/tex].

On s'inspire de la question précédente :

[tex](x+y)^2-(1+xy)^2=x^2+2xy+y^2-1-x^2y^2-2xy=(x^2-1)(1-y^2)[/tex].

(Il s'agit en fait de la deuxième égalité de 1) appliquée à [tex]x^2[/tex] et [tex]y^2[/tex].)

Ainsi :

[tex]\frac{(x+y)^2}{(1+xy)^2}=\frac{(x^2-1)(1-y^2)+(1+xy)^2}{(1+xy)^2}=\frac{(x^2-1)(1-y^2)}{(1+xy)^2}+1[/tex].

Déterminons le signe de la fraction :

- [tex]x^2<1[/tex] par hypothèse, donc [tex]x^2-1<0[/tex]

- [tex]y^2<1[/tex] donc [tex]1-y^2>0[/tex]

- et [tex](1+xy)^2 >0[/tex] comme carré.

Ainsi : [tex]\frac{(x^2-1)(1-y^2)}{(1+xy)^2} <0[/tex] d'où : [tex]\frac{(x^2-1)(1-y^2)}{(1+xy)^2} +1 =\frac{(x+y)^2}{(1+xy)^2}<1[/tex].

La fonction racine carrée étant croissante (et les termes positifs) : [tex]\boxed{\left|\frac{x+y}{1+xy} \right|<1}[/tex].

Rq : Si l'on n'avait pas pensé à élever au carré, il aurait fallu faire deux fois un raisonnement analogue. On aurait alors utilisé les deux égalités du 1) telles quelles.

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.