Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour ! Je n’arrive pas à résoudre ses exercices pouvez vous m’aider en m’expliquant comment vous avez fais s’il vous plaît merci .

Bonjour Je Narrive Pas À Résoudre Ses Exercices Pouvez Vous Maider En Mexpliquant Comment Vous Avez Fais Sil Vous Plaît Merci class=

Sagot :

Réponse :

Bonjour :)

Explications étape par étape

a) Voir courbe

b) On sépare l'intégrale en deux (on a le droit) pour pouvoir utiliser les expressions qu'on nous a donné:

[tex]\int\limits^1_3 {g(x)} \, dx =\int\limits^0_3 {g(x)} \, dx +\int\limits^1_0 {g(x)} \, dx[/tex]

(mes "3" en dessous sont des "-3", je n'ai pas réussi à caler le signe "-")

On peut utiliser les expressions de g(x) pour chacun des intervalles considérés:

[tex]\int\limits^1_3 {g(x)} \, dx =\int\limits^0_3 {x+3} \, dx +\int\limits^1_0 {-2x+3} \, dx[/tex]

Pour la première intégrale, la fonction G1(x)=x²/2+3x est une primitive de g, et la fonction G2(x)= -x²+3x est une primitive pour la deuxième équation

On a alors:

[tex]\int\limits^1_3 {g(x)} \, dx = [G1(x)]\left \{ {{0} \atop {-3}} \right. +[G2(x)]\left \{ {{1} \atop {0}} \right.\\[/tex]

(encore une fois je n'ai pas trouvé de façon d'écrire ça proprement, j'espère que c'est compréhensible)

[tex]\int\limits^1_3 {x} \, dx = G1(0)-G1(-3) + G2(1)-G2(0) = (-3*-3)/2+3*(-3) + -(1*1)+3*1 \\[/tex][tex]\int\limits^1_3 {g(x)} \, dx =4,5-9-1+3= -2,5[/tex]

4)a) Déjà F est bien définie et dérivable sur I.

Pour tout x appartenant à I:

F'(x)=  (6x*(x+4) - 1 * ( 3x²)) /(x+4)² = (3x² - 24x) / (x+4)² = f(x)

Pour rappel : (u/v)'=(u'v-v'u)/v2

Donc F est bien une primitive de f sur I.

b)

[tex]\int\limits^4_2 {f(x)} \, dx = [F(x)]\left \{ 4 \atop {2}} \right. \\ = F(4) - F(2) \\= (3*(4*4))/(4+4) - (3*2*2)/(2+4)\\=6-2 = 4[/tex]

View image arthurduvier
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.