Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour ! Je n’arrive pas à résoudre ses exercices pouvez vous m’aider en m’expliquant comment vous avez fais s’il vous plaît merci .

Bonjour Je Narrive Pas À Résoudre Ses Exercices Pouvez Vous Maider En Mexpliquant Comment Vous Avez Fais Sil Vous Plaît Merci class=

Sagot :

Réponse :

Bonjour :)

Explications étape par étape

a) Voir courbe

b) On sépare l'intégrale en deux (on a le droit) pour pouvoir utiliser les expressions qu'on nous a donné:

[tex]\int\limits^1_3 {g(x)} \, dx =\int\limits^0_3 {g(x)} \, dx +\int\limits^1_0 {g(x)} \, dx[/tex]

(mes "3" en dessous sont des "-3", je n'ai pas réussi à caler le signe "-")

On peut utiliser les expressions de g(x) pour chacun des intervalles considérés:

[tex]\int\limits^1_3 {g(x)} \, dx =\int\limits^0_3 {x+3} \, dx +\int\limits^1_0 {-2x+3} \, dx[/tex]

Pour la première intégrale, la fonction G1(x)=x²/2+3x est une primitive de g, et la fonction G2(x)= -x²+3x est une primitive pour la deuxième équation

On a alors:

[tex]\int\limits^1_3 {g(x)} \, dx = [G1(x)]\left \{ {{0} \atop {-3}} \right. +[G2(x)]\left \{ {{1} \atop {0}} \right.\\[/tex]

(encore une fois je n'ai pas trouvé de façon d'écrire ça proprement, j'espère que c'est compréhensible)

[tex]\int\limits^1_3 {x} \, dx = G1(0)-G1(-3) + G2(1)-G2(0) = (-3*-3)/2+3*(-3) + -(1*1)+3*1 \\[/tex][tex]\int\limits^1_3 {g(x)} \, dx =4,5-9-1+3= -2,5[/tex]

4)a) Déjà F est bien définie et dérivable sur I.

Pour tout x appartenant à I:

F'(x)=  (6x*(x+4) - 1 * ( 3x²)) /(x+4)² = (3x² - 24x) / (x+4)² = f(x)

Pour rappel : (u/v)'=(u'v-v'u)/v2

Donc F est bien une primitive de f sur I.

b)

[tex]\int\limits^4_2 {f(x)} \, dx = [F(x)]\left \{ 4 \atop {2}} \right. \\ = F(4) - F(2) \\= (3*(4*4))/(4+4) - (3*2*2)/(2+4)\\=6-2 = 4[/tex]

View image arthurduvier
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.