Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Un collectionneur de timbres a posé sur sa table, en vrac, douze timbres dont cinq ivoiriens, 3 français et quatre anglais. Il a perdu ses lunettes et de ce fait ne peut pas distinguer les timbres. On suppose donc l’équiprobabilité des tirages. Il prend au hasard et simultanément trois timbres. 1. Quel est le nombre de tirages possibles ? 2. Soit A l’évènement : « obtenir au moins un timbre français » Justifie que P(A) = 34 55 3. On considère les évènements suivants B : « Obtenir trois timbres ivoiriens » C : « Obtenir un timbre de chaque nationalité » D : « Obtenir au plus deux timbres anglais » E : « Obtenir deux timbres français et un timbres en anglais » Calcule P(B) ; P(C) ; P(D) et P(E)

Sagot :

Réponse :

Explications étape par étape :

BONSOIR !

■ "il a perdu ses lunettes" --> Ivoirien ! ☺

■ nb d' issues possibles ?

   3 Ivoiriens = III ; IIF ; IIA ; IFF ; IAA; IFA ;

   FFF ; FFA ; FAA ;

   AAA ; donc 10 issues possibles !

proba(3 Ivoiriens) = 5/12 x 4/11 x 3/10 = 1/22 = 10/220

   proba(3 F) = 3/12 x 2/11 x 1/10 = 1/220

   proba(3 A) = 4/12 x 3/11 x 2/10 = 1/55 = 4/220

   p(2A et I ou F) = 3 x [ 4/12 x 3/11 x (5/10 + 3/10) ]

                            = 3 x 4/12 x 3/11 x 8/10 = 12/55 = 48/220

   p(2F et I ou A) = 3 x [ 3/12 x 2/11 x (5/10 + 4/10) ]

                            = 3 x 3/12 x 2/11 x 9/10 = 27/220

   p(2 I et F ou A) = 3 x [ 5/12 x 4/11 x (3/10 + 4/10) ]

                            = 3 x 5/12 x 4/11 x 7/10 = 7/22 = 70/220

   p(IFA) = 6 x 5/12 x 3/11 x 4/10 = 3/11 = 60/220

   TOTAL = (15+48+27+70+60) / 220 = 220/220 = 1 ♥

proba(au moins 1 F) = p(3 F) + p(2 F) + p(1 F)

                                    = 1/220 + 27/220 + 3x3/12x9/11x8/10

                                    = 1/220 + 27/220 + 108/220

                                    = 136/220

                                    = 34/55 .

   autre méthode : p(≥ 1 F) = 1 - p(3 I) - p(3 A) - p(2A+I) - p(A+2I)

                                           = 1 - 1/22 - 1/55 - 3/22 - 2/11

                                           = 1 - 4/22 - 1/55 - 2/11

                                           = 1 - 2/11 - 1/55 - 2/11

                                           = 1 - 4/11 - 1/55

                                           = 1 - 20/55 - 1/55

                                           = 1 - 21/55

                                           = 34/55 .

■ p(au plus 2 A) = 1 - p(3 A) = 1 - 1/55 = 54/55 .

■ p(2F + A) = 3 x 3/12 x 2/11 x 4/10 = 3/55 .

                                   

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.