Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Svp aidez-moi Montrons que la fonction x--> cos(1/x) n'admet pas de limite en 0 (zéro) Et merci d'avance

Sagot :

Réponse : Bonjour,

Comme [tex]\displaystyle \lim_{x \mapsto 0} \frac{1}{x}=+\infty[/tex], il suffit donc d'étudier la limite de cos(x) en +∞.

On pose [tex]u_{n}=2\pi n[/tex], alors [tex]\lim_{n \mapsto +\infty} u_{n}=+\infty[/tex], et [tex]\lim_{n \mapsto +\infty} \cos(u_{n})=1[/tex].

On pose maintenant [tex]\displaystyle v_{n}=\frac{\pi}{2}+2 \pi n[/tex], alors [tex]\lim_{n \mapsto +\infty} v_{n}=+\infty[/tex], et [tex]\lim_{n \mapsto +\infty} \cos(v_{n})=0[/tex].

Donc cos(x) n'a pas de limite en +∞, et donc [tex]\displaystyle \cos\left(\frac{1}{x}\right)[/tex] , n'admet pas de limite en 0.

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.