Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Bonjour ! ;)
Réponse :
(1) Résolvons tout d'abord : x² + x + 4 = 0 ( ici a = 1 ; b = 1 ; c = 4 ! )
Calculons le discriminant associé à cette équation :
Δ = b² - 4 * a * c
⇒ Δ = 1² - 4 * 1 * 4
⇒ Δ = - 15
Comme Δ < 0, on en déduit que " x² + x + 4 = 0 " n'admet aucune solution dans |R. Cela signifie donc que : x ∉ |R.
(2) Résolvons maintenant : x (x - 1) (x² + x + 4) = 0
Un produit est nul si et seulement si au moins l'un de ses facteurs est nul, c'est-à-dire si :
x = 0 ou x - 1 = 0 ou x² + x + 4 = 0
⇒ x = 0 ou x = 1 ou x ∉ |R
Donc, S = { 0 ; 1 }.
(3) Nous pouvons en déduire le tableau de signes suivant :
voir pièce jointe ! ;)
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.