Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

BONJOUR SVP AIDER MOIII DANS CET EXP DE MATHS MERCIII

BONJOUR SVP AIDER MOIII DANS CET EXP DE MATHS MERCIII class=

Sagot :

Réponse :

Explications étape par étape

■ f(x) = x / √(x²+4) sur IR

■ f ' (x) = [ √(x²+4) - 0,5x.2x/√(x²+4) ] / (x²+4)

= [ (x²+4-x²) / √(x²+4) ] / (x²+4)

= 4 / [ √(x²+4) ]puissance(1,5)

toujours positive donc

la fonction f est toujours croissante !

■ f ' (0) = 4 / [ 2puiss1,5 ] = 4 / 2√2 = 2 / √2 = √2

d' où l' équation de la tangente au point (0;0) :

y = x√2

la tangente passe par le point (√2 ; 2 )

■ f(-x) = -x / √(x²+4) = - f(x) donc f est bien impaire !

■ remarque sur les limites à l' infini :

Lim f(x) pour x tendant vers +∞ = Lim x / √x² = 1

Lim f(x) pour x tendant vers -√(x²+4) = -1

■ tableau de variation et de valeurs :

x --> -∞ -10 -1 0 1 √2 10 +∞

variation -> toujours croissante

f(x) -> -1 -0,98 -0,45 0 0,45 0,58 0,98 1

■ remarque sur la représentation graphique de f :

la courbe est comprise entre les deux asymptotes horizontales

d' équations y = -1 et y = +1 ; et présente une symétrie

par rapport à l' origine ( car f est impaire ! )